DOI QR코드

DOI QR Code

Methanogenic Archaeal Census of Ruminal Microbiomes

반추위 마이크로바이옴 내 메탄생성고세균 조사

  • Lee, Seul (Animal Nutrition and Physiology Team, National Institute of Animal Science) ;
  • Baek, Youlchang (Animal Nutrition and Physiology Team, National Institute of Animal Science) ;
  • Lee, Jinwook (Animal Genetic Resources Research Center, National Institute of Animal Science) ;
  • Kim, Minseok (Department of Animal Science, College of Agriculture and Life Sciences, Chonnam National University)
  • 이슬 (국립축산과학원 영양생리팀) ;
  • 백열창 (국립축산과학원 영양생리팀) ;
  • 이진욱 (국립축산과학원 가축유전자원센터) ;
  • 김민석 (전남대학교 농업생명과학대학 동물자원학부)
  • Received : 2020.05.06
  • Accepted : 2020.07.03
  • Published : 2020.07.31

Abstract

The objective of the study was to undertake a phylogenetic diversity census of ruminal archaea based on a meta-analysis of 16S rRNA gene sequences that were publicly available in the Ribosomal Database Project. A total of 8,416 sequences were retrieved from the Ribosomal Database Project (release 11, update 5) and included in the construction of a taxonomy tree. Species-level operational taxonomic units (OTUs) were analyzed at a 97% sequence similarity by using the QIIME program. Of the 8,416 sequences, 8,412 were classified into one of three phyla; however, the remaining four sequences could not be classified into a known phylum. The Euryarchaeota phylum was predominant and accounted for 99.8% of the archaeal sequences examined. Among the Euryarchaeota, 65.4% were assigned to Methanobrevibacter, followed by Methanosphaera (10.4%), Methanomassillicoccus (10.4%), Methanomicrobium (7.9%), Methanobacterium (1.9%), Methanimicrococcus (0.5%), Methanosarcina (0.1%), and Methanoculleus (0.1%). The 7,544 sequences that had been trimmed to the V2 and V3 regions clustered into 493 OTUs. Only 17 of those 493 OTUs were dominant groups and accounted for more than 1% of the 7,544 sequences. These results can help guide future research into the dominant ruminal methanogens that significantly contribute to methane emissions from ruminants, research that may lead to the development of anti-methanogenic compounds that inhibit these methanogens regardless of diet or animal species.

본 연구의 목적은 Ribosomal Database Project에서 공적으로 활용 가능한 16S rRNA 유전자 시퀀스들의 메타분석을 통해 반추위 고세균의 계통발생 다양성을 조사하는 것이다. 총 8,416개의 시퀀스가 Ribosomal Database Project(출시버전 11, 업데이트 5)로부터 회수되었고, taxonomy tree를 구축하는데 사용되었다. Species 수준의 OTUs가 97% sequence 유사성 기준으로 QIIME 프로그램을 사용하여 분석되었다. 총 8,416개의 시퀀스 중에서 8,412개의 시퀀스는 총 3개의 문으로 분류되었고, 나머지 4개의 시퀀스는 어떤 알려진 문으로 분류되지 못했다. Euryarchaeota는 가장 우점하는 문으로, 전체 고세균 시퀀스의 99.8%를 차지하였다. 이 중에서 차례로 Methanobrevibacter가 65.4%, Methanosphaera가 10.4%, Methanomassillicoccus가 10.4%, Methanomicrobium가 7.9%, Methanobacterium가 1.9%, Methanimicrococcus가 0.5%, Methanosarcina가 0.1%, Methanoculleus가 0.1%를 차지하였다. V2와 V3 영역으로 자른 7,544개의 시퀀스는 493개의 OTUs로 분류되었다. 총 493 OTUs 중에서 단지 17개만 우점하였고, 총 7,544 시퀀스 중 1% 이상을 차지하였다. 본 연구는 반추동물로 부터 메탄발생에 크게 기여하는 반추위 우점 메탄생성균 분석에 대한 향후 연구를 인도하는데 도움을 주고, 사료나 가축품종이 달라져도 이러한 메탄생성균을 억제하는 메탄저감제를 개발하는데 도움을 줄 것이다.

Keywords

References

  1. M. Kim, M. Morrison, Z. Yu, "Status of the phylogenetic diversity census of ruminal microbiomes", FEMS Microbiology Ecology, Vol.76, No.1, pp.49-63, Apr. 2011. DOI: http://dx.doi.org/10.1111/j.1574-6941.2010.01029.x
  2. R. Seshadri, S. C. Leahy, G. T. Attwood, K. H. Teh, S. C. Lambie, et al., "Cultivation and sequencing of rumen microbiome members from the Hungate1000 Collection" Nature biotechnology, Vol.36, No.4, pp. 359-367, Apr. 2018. DOI : https://doi.org/10.1038/nbt.4110
  3. P. H. Janssen, M. Kirs, "Structure of the archaeal community of the rumen", Applied and Environmental Microbiology, Vol.74, No.12, pp.3619-3625, Jun. 2008. DOI: http://dx.doi.org/10.1128/AEM.02812-07
  4. M. Islam, S. S. Lee, "Advanced estimation and mitigation strategies: a cumulative approach to enteric methane abatement from ruminants", Journal of Animal Science and Technology, Vol.61, No.3, pp.122-137, May. 2019. DOI: https://doi.org/10.5187/jast.2019.61.3.122
  5. A. D. Wright, C. H. Auckland, D. H. Lynn, "Molecular diversity of methanogens in feedlot cattle from Ontario and Prince Edward Island, Canada", Applied and Environmental Microbiology, Vol.73, No.13, pp.4206-4210, Jul. 2007. DOI: http://dx.doi.org/10.1128/AEM.00103-07
  6. Z. Yu, R. Garcia-Gonzalez, F. L. Schanbacher, M. Morrison, "Evaluations of different hypervariable regions of archaeal 16S rRNA genes in profiling of methanogens by Archaea-specific PCR and denaturing gradient gel electrophoresis", Applied and Environmental Microbiology, Vol.74, No.3, pp.889-893, Feb. 2008. DOI: http://dx.doi.org/10.1128/AEM.00684-07
  7. M. Kim, Z. Yu, "Quantitative comparisons of select cultured and uncultured microbial populations in the rumen of cattle fed different diets", Journal of Animal Science and Biotechnolgy, Vol.3, No.1, p.28, Sep. 2012. DOI: http://dx.doi.org/10.1186/2049-1891-3-28
  8. M. Kim, J. Kim, L. A. Kuehn, J. L. Bono, E. D. Berry, et al., "Investigation of bacterial diversity in the feces of cattle fed different diets", Journal of Animal Science, Vol.92, No.2, pp.683-694, Feb. 2014. DOI: http://dx.doi.org/10.2527/jas.2013-6841
  9. M. Kim, L. Wang, M. Morrison, Z. Yu, "Development of a phylogenetic microarray for comprehensive analysis of ruminal bacterial communities", Journal of Applied Microbiology, Vol.117, No.4, pp.949-960, Oct. 2014. DOI: http://dx.doi.org/10.1111/jam.12598
  10. M. Kim, T. Park, Z. Yu, "Metagenomic investigation of gastrointestinal microbiome in cattle" Asian-Australasian Journal of Animal Sciences, Vol.30, No.11, pp.1515-1528, Nov. 2017. DOI : https://doi.org/10.5713/ajas.17.0544
  11. J. Song, J. Y. Jeong, M. Kim, "Diversity Census of Fungi in the Ruminal Microbiome: A meta-analysis" Journal of the Korea Academia-Industrial cooperation Society, Vol.18, No.12, pp.466-472, Dec. 2017. DOI: https://doi.org/10.5762/KAIS.2017.18.12.466
  12. S. Lee, M. Kim, "Diversity Census of Fecal Microbiome in Horses", Journal of Animal Reproduction and Biotechnology, Vol.34, No.3, pp.157-165, Sep. 2019. DOI: https://doi.org/10.12750/JARB.34.3.157
  13. W. Ludwig, O. Strunk, R. Westram, L. Richter, H. Meier, et al., "ARB: a software environment for sequence data", Nucleic Acids Research, Vol.32, No.4, pp.1363-1371, Feb. 2004. DOI: http://dx.doi.org/10.1093/nar/gkh293
  14. J. G. Caporaso, J. Kuczynski, J. Stombaugh, K. Bittinger, F. D. Bushman, et al., "QIIME allows analysis of high-throughput community sequencing data", Nature methods, Vol.7, No.5, pp.335-336, May. 2010. DOI: http://dx.doi.org/10.1038/nmeth.f.303
  15. J. A. Patterson, R. B. Hespell, "Trimethylamine and methylamine as growth substrates for rumen bacteria and Methanosarcina barkeri ", Current Microbiology, Vol.3, pp.79-83, Mar. 1979. DOI: https://doi.org/10.1007/BF02602436
  16. J. H. Lee, S. Kumar, G. H. Lee, D. H. Chang, M. S. Rhee, et al., "Methanobrevibacter boviskoreani sp. nov., isolated from the rumen of Korean native cattle", International Journal of Systematic and Evolutionary Microbiology, Vol.63, pp.4196-4201, Nov. 2013. DOI: http://dx.doi.org/10.1099/ijs.0.054056-0
  17. L. C. Skillman, P. N. Evans, C. Strömpl, K. N. Joblin, "16S rDNA directed PCR primers and detection of methanogens in the bovine rumen", Letters in Applied Microbiology, Vo.42, No.3, pp.222-228, Mar. 2006. DOI: http://dx.doi.org/10.1111/j.1472-765X.2005.01833.x
  18. M. Zhou, E. Hernandez-Sanabria, L. L. Guan, "Assessment of the microbial ecology of ruminal methanogens in cattle with different feed efficiencies", Applied and Environmental Microbiology, Vol.75, No.20, pp.6524-6533, Oct. 2009. DOI: http://dx.doi.org/10.1128/AEM.02815-08
  19. E. E. King, R. P. Smith, B. St-Pierre, A. D. Wright, "Differences in the rumen methanogen populations of lactating Jersey and Holstein dairy cows under the same diet regimen", Applied and Environmental Microbiology, Vol.77, No.16, pp.5682-5687, Aug. 2011. DOI: http://dx.doi.org/10.1128/AEM.05130-11
  20. D. E. Fouts, S. Szpakowski, J. Purushe, M. Torralba, R. C. Waterman, et al., "Next generation sequencing to define prokaryotic and fungal diversity in the bovine rumen", PLoS One, Vol.7, No.11, p.e48289, Nov. 2012. DOI: http://dx.doi.org/10.1371/journal.pone.0048289
  21. Y. Kong, Y. Xia, R. Seviour, R. Forster, T. A. McAllister, "Biodiversity and composition of methanogenic populations in the rumen of cows fed alfalfa hay or triticale straw", FEMS Microbiology Ecology, Vol.84, No.2, pp.302-315, May. 2013. DOI: http://dx.doi.org/10.1111/1574-6941.12062
  22. P. H. Janssen, M. Kirs, "Structure of the archaeal community of the rumen", Applied and Environmental Microbiology, Vol.74, No.12, pp.3619-3625, Jun. 2008. DOI: http://dx.doi.org/10.1128/AEM.02812-07
  23. S. Ohene-Adjei, A. V. Chaves, T. A. McAllister, C. Benchaar, R. M. Teather, R. J. Forster, "Evidence of increased diversity of methanogenic archaea with plant extract supplementation", Microbial Ecology, Vol.56, No.2, pp.234-242, Aug. 2008. DOI: http://dx.doi.org/10.1007/s00248-007-9340-0
  24. A. D. Wright, X. Ma, N. E. Obispo, "Methanobrevibacter phylotypes are the dominant methanogens in sheep from Venezuela.", Microbial Ecology, Vol.56, No.2, pp.390-394, Aug. 2008. DOI: http://dx.doi.org/10.1007/s00248-007-9351-x
  25. Z. P. Li, H. L. Liu, C. A. Jin, X. Z. Cui, Y. Jing, et al., "Differences in the methanogen population exist in sika deer (Cervus nippon) fed different diets in China", Microbial Ecology, Vol.66, No.4, pp.879-888, Nov. 2013. DOI: http://dx.doi.org/10.1007/s00248-013-0282-4
  26. M. A. Sundset, J. E. Edwards, Y. F. Cheng, R. S. Senosiain, M. N. Fraile, et al., "Rumen microbial diversity in Svalbard reindeer, with particular emphasis on methanogenic archaea", FEMS Microbiology Ecology, Vol.70, No.3, pp.553-562, Nov. 2009. DOI: http://dx.doi.org/10.1111/j.1574-6941.2009.00750.x
  27. M. A. Sundset, J. E. Edwards, Y. F. Cheng, R. S. Senosiain, M. N. Fraile, et al., "Molecular diversity of the rumen microbiome of Norwegian reindeer on natural summer pasture", Microbial Ecology, Vol.57, No.2, pp.335-348, Feb. 2009. DOI: http://dx.doi.org/10.1007/s00248-008-9414-7
  28. X. D. Huang, H. Y. Tan, R. Long, J. B. Liang, A. D. Wright, "Comparison of methanogen diversity of yak (Bos grunniens) and cattle (Bos taurus) from the Qinghai-Tibetan plateau", BMC Microbiology, Vol.19, p.237, Oct. 2012. DOI: http://dx.doi.org/10.1186/1471-2180-12-237
  29. S. Ohene-Adjei, R. M. Teather, M. Ivan, R. J. Forster, "Postinoculation protozoan establishment and association patterns of methanogenic archaea in the ovine rumen", Applied and Environmental Microbiology, Vol.73, No.14, pp.4609-4618, Jul. 2007. DOI: http://dx.doi.org/10.1128/AEM.02687-06
  30. J. Jeyanathan, M. Kirs, R. S. Ronimus, S. O. Hoskin, P. H. Janssen, "Methanogen community structure in the rumens of farmed sheep, cattle and red deer fed different diets", FEMS Microbiology Ecology, Vol.76, No.2, pp.311-326, May. 2011. DOI: http://dx.doi.org/10.1111/j.1574-6941.2011.01056.x
  31. I. S. Cunha, C. C. Barreto, O. Y. Costa, M. A. Bomfim, A. P. Castro, et al., "Bacteria and Archaea community structure in the rumen microbiome of goats (Capra hircus) from the semiarid region of Brazil", Anaerobe, Vol.17, No.3, pp.118-124, Jun. 2011. DOI: http://dx.doi.org/10.1016/j.anaerobe.2011.04.018
  32. E. C. Shin, B. R. Choi, W. J. Lim, S. Y. Hong, C. L. An, et al., "Phylogenetic analysis of archaea in three fractions of cow rumen based on the 16S rDNA sequence", Anaerobe, Vol.10, No.6, pp.313-319, Dec. 2004. DOI: http://dx.doi.org/10.1016/j.anaerobe.2004.08.002
  33. L. D. Tymensen, T. A. McAllister, "Community structure analysis of methanogens associated with rumen protozoa reveals bias in universal archaeal primers", Applied and Environmental Microbiology, Vol.78, No.11, pp.4051-4056, Jun. 2012. DOI: http://dx.doi.org/10.1128/AEM.07994-11