DOI QR코드

DOI QR Code

Experimental analysis of heat exchanger performance produced by laser 3D printing technique

레이저 3D 프린팅 기법으로 제작한 열교환기 성능시험 분석 연구

  • Kim, Moosun (Urban Transit Research Team, Korea Railroad Research Institute)
  • 김무선 (한국철도기술연구원 도시철도연구팀)
  • Received : 2020.05.22
  • Accepted : 2020.07.03
  • Published : 2020.07.31

Abstract

3D printing is an additive manufacturing technology that can produce complex shapes in a single process for a range of materials, such as polymers, ceramics, and metals. Recent 3D printing technology has developed to a level that enables the mass-production through an improvement of the printing speed and the continuous development of applicable materials. In this study, 3D printing technology using a laser was applied to manufacture a heat exchanger for an air compressor in a railway vehicle. First, the optimal design of the heat exchanger was carried out by focusing on weight reduction and compactness as a shape suitable for 3D printing. Based on the design derived, heat exchanger prototypes were made of AlSi10Mg alloy material by applying the SLM technique. Moreover, the manufactured prototypes were attached to an existing air compressor, and the heat exchange performance of the compressed air was tested. The test results of the 3D printed prototypes showed a heat exchange performance of approximately 80% and 85% at low and high-pressure, respectively, compared to the existing heat exchanger. From the 𝓔-NTU method results with an external cooling air condition similar to that of the existing heat exchanger, the calculated heat transfer amount of 3D printed parts showed similar performance compared to the existing heat exchanger. As a result, the 3D printed heat exchanger is lightweight with good performance.

3D 프린팅은 고분자, 세라믹, 금속 등 다양한 소재를 대상으로 복합적인 형상을 한 번의 공정으로 제작할 수 있는 적층 기반 제작 기술이다. 최근의 3D 프린팅 기술은 프린팅 속도의 향상과 적용 가능 소재의 지속적인 개발에 의해 양산형 제품 생산이 가능한 수준으로 발전하였다. 본 연구에서는 레이저를 활용한 3D 프린팅 기술을 적용하여 철도 차량용 공기 압축기에 쓰이는 열교환기 제작을 진행하였다. 먼저 3D 프린팅에 적합한 형상으로 경량화 및 컴팩트화를 주안점으로 열교환기의 최적 설계를 진행하였다. 그로부터 도출된 설계안을 기반으로 SLM 기법을 적용하여 AlSi10Mg 합금 소재로 열교환기 시작품을 제작하였다. 다음으로, 제작된 시작품을 기존 공기 압축기에 부착하여, 압축공기의 열교환 성능을 시험하였다. 3D 프린팅 시작품의 시험 결과는 기존 열교환기 대비하여 저압부와 고압부에서 열교환 성능은 각각 약 80% 및 85% 수준을 보였다, 하지만 외부 냉각공기 조건을 기존 열교환기와 유사한 조건으로 가정하였을 때 𝓔-NTU 법을 활용하여 계산한 열전달량은 기존 열교환기 대비하여 유사한 성능을 보여 주었다. 결과적으로, 3D 프린팅 제작 열교환기의 성능 효과 및 경량화 등의 장점을 확인할 수 있었다.

Keywords

References

  1. N.Read, W.Wang, K.Essa, M.Attallah, "Selective laser melting of AlSi10Mg alloy: process optimisation and mechanical properties development", Materials & Design, vol.65, pp.417-424, 2015. DOI: https://doi.org/10.1016/j.matdes.2014.09.044
  2. A.Simchi, H.Pohl, "Effect of laser sintering processing parameters on the microstructure and densification of iron powder", Materials Science and Engineering: A, vol.359, pp.119-128, 2003. DOI: https://doi.org/10.1016/s0921-5093(03)00341-1
  3. M.Dewidar, K.Dalgarno, C.Wright, "Processing conditions and mechanical properties of high-speed steel parts fabricated using direct selective laser sintering", Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, vol.217, pp.1651-1662, 2003. DOI: https://doi.org/10.1243/095440503772680587
  4. W.Su, P.Erasenthiran, P.Dickens, "Investigation of fully dense laser sintering of tool steel powder using a pulsed Nd:YAG laser", Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, vol.217, pp.127-138, 2003. DOI: https://doi.org/10.1243/095440603762554677
  5. N.Aboulkhair, N.Everitt, I.Ashcroft, C.Tuck, "Reducing porosity in AlSi10Mg parts processed by selective laser melting", Additive Manufacturing, vol.1-4, pp.77-86, 2014. DOI: https://doi.org/10.1016/j.addma.2014.08.001
  6. E.Strumza, O.Yeheskel, S.Hayun, "The effect of texture on the anisotropy of thermophysical properties of additively manufactured AlSi10Mg", Additive MAnufacturing, vol.29,pp.1-8, 2019. DOI: https://doi.org/10.1016/j.addma.2019.06.013
  7. K.G.Prashanth, S.Scudino, H.J.Klauss, K.B.Surreddi, L.Lober, Z.Wang, A.K.Chaubey, U.Kuhn, J.Eckert,"Microstructure and mechanical properties of Al-12Si produced by selective laser melting: Effect of heat treatment", Materilas Science &Engineering A, vol.590, pp.153-160, 2014. DOI: https://dx.doi.org/10.1016/j.msea.2013.10.023
  8. Operating instructions of ALMiG compressor WP2N85T, ALMiG Kompressoren GmbH, 2014
  9. M. Kim,"Design and Manufacturing Technology of Heat Exchanger in Air Compressor for Railroad Vehicle by 3D Printing Process", Journal of the Korea Academia-Industrial cooperation Society, vol. 18, no.11, pp.802-809, 2017. DOI:https://doi.org/10.5762/KAIS.2017.18.11.802
  10. C. O. Olsson, B. Sunden, "Experimental study of flow and heat transfer in rib-roughened rectangular channels", Experimental Thermal and Fluid Science, vol. 16, pp.349-365, 1998. DOI: https://doi.org/10.1016/S0894-1777(97)10034-6
  11. D. Junqi, C. Jiangping, C. Zhijiu, Z. Yimin, Z. Wenfeng, "Heat transfer and pressure drop correlations for the wavy fin and flat tube heat exchangers", Applied Thermal Engineering, vol. 27, pp. 2066-2073, 2007. DOI:https://doi.org/10.1016/j.applthermaleng.2006.11.012
  12. J.Ahn, M.Kim, S.Jang, "Heat Transfer Analysis of a Heat Exchanger for an Air-Compressor of a Railway Vehicle Based on Cooling Air Flow Measurement", Korean Journal of Air-Conditioning and Refrigeration Engineering, vol.29, no.9, pp.447-454. DOI: https://.doi.org/10.6110/KJACR.2017.29.9.447