Acknowledgement
We thank the anonymous reviewers for their insightful comments and suggestions that helped us improve the paper.
References
- M. T. K. Abbassi and M. Sarih, On natural metrics on tangent bundles of Riemannian manifolds, Arch. Math. (Brno) 41 (2005), no. 1, 71-92. https://doi.org/10.1007/BF01193825
- J. Cheeger and D. Gromoll, On the structure of complete manifolds of nonnegative curvature, Ann. of Math. (2) 96 (1972), 413-443. https://doi.org/10.2307/1970819
- M. Djaa and J. Gancarzewicz, The geometry of tangent bundles of order r, Boletin Academia, Galega de Ciencias. 4 (1985), 147-165.
- P. Dombrowski, On the geometry of the tangent bundle, J. Reine Angew. Math. 210 (1962), 73-88. https://doi.org/10.1515/crll.1962.210.73
- J. Eells and L. Lemaire, Another report on harmonic maps, Bull. London Math. Soc. 20 (1988), no. 5, 385-524. https://doi.org/10.1112/blms/20.5.385
- J. Eells, Jr., and J. H. Sampson, Harmonic mappings of Riemannian manifolds, Amer. J. Math. 86 (1964), 109-160. https://doi.org/10.2307/2373037
- S. Gudmundsson and E. Kappos, On the geometry of the tangent bundle with the Cheeger-Gromoll metric, Tokyo J. Math. 25 (2002), no. 1, 75-83. https://doi.org/10.3836/tjm/1244208938
- F. Latti, M. Djaa, and A. Zagane, Mus-Sasaki metric and harmonicity, Math. Sci. Appl. E-Notes 6 (2018), no. 1, 29-36.
- A. Salimov and A. Gezer, On the geometry of the (1, 1)-tensor bundle with Sasaki type metric, Chin. Ann. Math. Ser. B 32 (2011), no. 3, 369-386. https://doi.org/10.1007/s11401-011-0646-3
- S. Sasaki, On the differential geometry of tangent bundles of Riemannian manifolds. II, Tohoku Math. J. (2) 14 (1962), 146-155. https://doi.org/10.2748/tmj/1178244169
- K. Yano and S. Ishihara, Tangent and Cotangent Bundles: differential geometry, Marcel Dekker, Inc., New York, 1973.
- A. Zagane and M. Djaa, On geodesics of warped Sasaki metric, Math. Sci. Appl. E-Notes 5 (2017), no. 1, 85-92.