DOI QR코드

DOI QR Code

ON SOME CLASSES OF WEAKLY Z-SYMMETRIC MANIFOLDS

  • 투고 : 2019.08.06
  • 심사 : 2019.12.17
  • 발행 : 2020.07.31

초록

The aim of the paper is to study some geometric properties of weakly Z-symmetric manifolds. Weakly Z-symmetric manifolds with Codazzi type and cyclic parallel Z tensor are studied. We consider Einstein weakly Z-symmetric manifolds and conformally flat weakly Z-symmetric manifolds. Next, it is shown that a totally umbilical hypersurface of a conformally flat weakly Z-symmetric manifolds is of quasi constant curvature. Also, decomposable weakly Z-symmetric manifolds are studied and some examples are constructed to support the existence of such manifolds.

키워드

참고문헌

  1. A. L. Besse, Einstein manifolds, Ergebnisse der Mathematik und ihrer Grenzgebiete (3), 10, Springer-Verlag, Berlin, 1987. https://doi.org/10.1007/978-3-540-74311-8
  2. T. Q. Binh, On weakly symmetric Riemannian spaces, Publ. Math. Debrecen 42 (1993), no. 1-2, 103-107.
  3. E. Cartan, Sur une classe remarquable d'espaces de Riemann, Bull. Soc. Math. France 54 (1926), 214-264. https://doi.org/10.24033/bsmf.1105
  4. M. C. Chaki, On pseudo symmetric manifolds, An. Stiint. Univ. Al. I. Cuza Iasi Sect. I a Mat. 33 (1987), no. 1, 53-58.
  5. M. C. Chaki, On generalized quasi Einstein manifolds, Publ. Math. Debrecen 58 (2001), no. 4, 683-691.
  6. M. C. Chaki and B. Gupta, On conformally symmetric spaces, Indian J. Math. 5 (1963), 113-122.
  7. B. Chen and K. Yano, Hypersurfaces of a conformally flat space, Tensor (N.S.) 26 (1972), 318-322.
  8. S. Chern, On curvature and characteristic classes of a Riemann manifold, Abh. Math. Sem. Univ. Hamburg 20 (1955), 117-126. https://doi.org/10.1007/BF02960745
  9. U. C. De, On weakly symmetric structures on a Riemannian manifold, Facta Univ. Ser. Mech. Automat. Control Robot. 3 (2003), no. 14, 805-819.
  10. U. C. De and S. Bandyopadhyay, On weakly symmetric Riemannian spaces, Publ. Math. Debrecen 54 (1999), no. 3-4, 377-381.
  11. U. C. De, C. A. Mantica, and Y. J. Suh, On weakly cyclic Z symmetric manifolds, Acta Math. Hungar. 146 (2015), no. 1, 153-167. https://doi.org/10.1007/s10474-014-0462-9
  12. U. C. De and P. Pal, On almost pseudo-Z-symmetric manifolds, Acta Univ. Palack. Olomuc. Fac. Rerum Natur. Math. 53 (2014), no. 1, 25-43.
  13. U. C. De and J. Sengupta, On a weakly symmetric Riemannian manifold admitting a special type of semi-symmetric metric connection, Novi Sad J. Math. 29 (1999), no. 3, 89-95.
  14. U. C. De and A. A. Shaikh, Differential geometry of manifolds, Alpha Science International Ltd. Oxford, U.K., 263-272, 2007.
  15. A. Gray, Einstein-like manifolds which are not Einstein, Geom. Dedicata 7 (1978), no. 3, 259-280. https://doi.org/10.1007/BF00151525
  16. S. K. Hui, On weakly $W_3$-symmetric manifolds, Acta Univ. Palack. Olomuc. Fac. Rerum Natur. Math. 50 (2011), no. 1, 53-71.
  17. C. A. Mantica and L. G. Molinari, Weakly Z-symmetric manifolds, Acta Math. Hungar. 135 (2012), no. 1-2, 80-96. https://doi.org/10.1007/s10474-011-0166-3
  18. C. A. Mantica and Y. J. Suh, Pseudo Z symmetric Riemannian manifolds with harmonic curvature tensors, Int. J. Geom. Methods Mod. Phys. 9 (2012), no. 1, 1250004, 21 pp. https://doi.org/10.1142/S0219887812500041
  19. F. Ozen and S. Altay, On weakly and pseudo-symmetric Riemannian spaces, Indian J. Pure Appl. Math. 33 (2002), no. 10, 1477-1488.
  20. M. Prvanovic, On weakly symmetric Riemannian manifolds, Publ. Math. Debrecen 46 (1995), no. 1-2, 19-25.
  21. J. A. Schouten, Ricci-calculus. An introduction to tensor analysis and its geometrical applications, Die Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen mit besonderer Berucksichtigung der Anwendungsgebiete, Bd X, Springer-Verlag, Berlin, 1954.
  22. L. Tamassy and T. Q. Binh, On weakly symmetric and weakly projective symmetric Riemannian manifolds, in Differential geometry and its applications (Eger, 1989), 663- 670, Colloq. Math. Soc. Janos Bolyai, 56, North-Holland, Amsterdam,1992.
  23. L. Tamassy and T. Q. Binh, On weak symmetries of Einstein and Sasakian manifolds, Tensor (N.S.) 53 (1993), Commemoration Volume I, 140-148.
  24. A. G. Walker, On Ruse's spaces of recurrent curvature, Proc. London Math. Soc. (2) 52 (1950), 36-64. https://doi.org/10.1112/plms/s2-52.1.36
  25. K. Yano and M. Kon, Structures on manifolds, Series in Pure Mathematics, 3, World Scientific Publishing Co., Singapore, 1984.