DOI QR코드

DOI QR Code

INTEGER POINTS ON THE ELLIPTIC CURVES INDUCED BY DIOPHANTINE TRIPLES

  • Park, Jinseo (Department of Mathematical Education Catholic Kwandong University)
  • Received : 2019.10.15
  • Accepted : 2019.12.31
  • Published : 2020.07.31

Abstract

A set {a1, a2, …, am} of positive integers is called a Diophantine m-tuple if aiaj + 1 is a perfect square for all 1 ≤ i < j ≤ m. In this paper, we find the structure of a torsion group of elliptic curves Ek constructed by a Diophantine triple {F2k, F2k+2, 4F2k+1F2k+2F2k+3}, and find all integer points on the elliptic curve under assumption that rank(Ek(ℚ)) = 2.

Keywords

References

  1. Lj. Bacic and A. Filipin, The extendibility of D(4)-pairs {$F_{2k}$, $F_{2k+6}$} and {$P_{2k}$, $P_{2k+4}$}, Rad Hrvat. Akad. Znan. Umjet. Mat. Znan. 20 (2016), 27-35.
  2. J. H. E. Cohn, Square Fibonacci numbers, etc, Fibonacci Quart. 2 (1964), 109-113.
  3. J. E. Cremona, Algorithms for Modular Elliptic Curves, second edition, Cambridge University Press, Cambridge, 1997.
  4. L. E. Dickson, History of the Theory of Numbers. Vol. II, Chelsea Publishing Co., New York, 1966.
  5. A. Dujella, A proof of the Hoggatt-Bergum conjecture, Proc. Amer. Math. Soc. 127 (1999), no. 7, 1999-2005. https://doi.org/10.1090/S0002-9939-99-04875-3
  6. A. Dujella, A parametric family of elliptic curves, Acta Arith. 94 (2000), no. 1, 87-101. https://doi.org/10.4064/aa-94-1-87-101
  7. A. Dujella, Diophantine m-tuples and elliptic curves, J. Theor. Nombres Bordeaux 13 (2001), no. 1, 111-124. https://doi.org/10.5802/jtnb.308
  8. A. Dujella, Diophantine quadruples and Fibonacci numbers, Bull. Kerala Math. Assoc. 1 (2004), no. 2, 133-147.
  9. A. Dujella and A. Petho, Integer points on a family of elliptic curves, Publ. Math. Debrecen 56 (2000), no. 3-4, 321-335.
  10. A. Filipin, The extendibility of D(4)-pair {$F_{2k}$, $5F_{2k}$}, Fibonacci Quart. 53 (2015), no. 2, 124-129.
  11. A. Filipin, Y. Fujita, and A. Togbe, The extendibility of Diophantine pairs I: the general case, Glas. Mat. Ser. III 49(69) (2014), no. 1, 25-36. https://doi.org/10.3336/gm.49.1.03
  12. A. Filipin, Y. Fujita, and A. Togbe, The extendibility of Diophantine pairs II: Examples, J. Number Theory 145 (2014), 604-631. https://doi.org/10.1016/j.jnt.2014.06.020
  13. Y. Fujita, The Hoggatt-Bergum conjecture on D(-1)-triples {$F_{2k+1}$, $F_{2k+3}$, $F_{2k+5}$} and integer points on the attached elliptic curves, Rocky Mountain J. Math. 39 (2009), no. 6, 1907-1932. https://doi.org/10.1216/RMJ-2009-39-6-1907
  14. Y. Fujita and F. Luca, On Diophantine quadruples of Fibonacci numbers, Glas. Mat. Ser. III 52(72) (2017), no. 2, 221-234. https://doi.org/10.3336/gm.52.2.02
  15. B. He, F. Luca, and A. Togbe, Diophantine triples of Fibonacci numbers, Acta Arith. 175 (2016), no. 1, 57-70.
  16. B. He, A. Togbe, and V. Ziegler, There is no Diophantine quintuple, Trans. Amer. Math. Soc. 371 (2019), no. 9, 6665-6709. https://doi.org/10.1090/tran/7573
  17. V. E. Hoggatt, Jr., and G. E. Bergum, A problem of Fermat and the Fibonacci sequence, Fibonacci Quart. 15 (1977), no. 4, 323-330.
  18. D. Husemoller, Elliptic Curves, Graduate Texts in Mathematics, 111, Springer-Verlag, New York, 1987.
  19. A. W. Knapp, Elliptic Curves, Mathematical Notes, 40, Princeton University Press, Princeton, NJ, 1992.
  20. J. B. Lee and J. Park, Some conditions on the form of third element from Diophantine pairs and its application, J. Korean Math. Soc. 55 (2018), no. 2, 425-445. https://doi.org/10.4134/JKMS.j170289
  21. J. Morgado, Generalization of a result of Hoggatt and Bergum on Fibonacci numbers, Portugal. Math. 42 (1983/84), no. 4, 441-445 (1986).
  22. K. Ono, Euler's concordant forms, Acta Arith. 78 (1996), no. 2, 101-123. https://doi.org/10.4064/aa-78-2-101-123
  23. SIMATH manual, Saarbrucken, 199, ATH manual, Saarbrucken, 1997.