DOI QR코드

DOI QR Code

The Analysis of Elementary School Teachers' Perception of Using Artificial Intelligence in Education

인공지능 활용 교육에 대한 초등교사 인식 분석

  • Received : 2020.04.22
  • Accepted : 2020.07.20
  • Published : 2020.07.28

Abstract

The purpose of this study is to comprehensively analyze elementary school teachers' perceptions of the use of artificial intelligence in education. Recently, interest in the use of artificial intelligence has increased in the field of education. However, there is a lack of research on the perceptions of elementary school teachers using AI in education. Using descriptive statistics, multiple linear regression analysis, and semantic differential meaning scale, 69 elementary school teachers' perceptions of using AI in education were analyzed. As a results, artificial intelligence technology was perceived as most suitable method for assisting activities in class and for problem-based learning. Factors which influence the use of AI in education were learning contents, learning materials, and AI tools. AI in education had the features of personalized learning, promoting students' participation, and provoking students' interest. Further, instructional strategies or models that enable optimized educational operation should be developed.

본 연구는 인공지능 활용 교육에 대한 초등교사의 인식을 종합적으로 분석하는 목적을 지닌다. 최근 학교 교육 현장에서 인공지능 기술의 활용에 대한 관심이 증대되고 있다. 하지만 초등학교 교사들이 이를 어떻게 인식하는지를 확인하는 연구는 미흡하다. 본 연구는 초등교사 69명을 대상으로 기술통계, 중다회귀분석, 의미변별척도를 활용하여 초등교사들이 교육에서 인공지능 활용에 대해 어떻게 인식하는지를 총체적으로 분석하였다. 연구 결과, 초등교사들은 인공지능 기술이 수업 시간 내 활동을 보조하는데 가장 적합하다고 응답하였으며 교수학습 방법 측면에서는 문제중심학습이 가장 적절하다고 인식하고 있었다. 인공지능의 교육적 활용에 대해 영향을 미치는 요소는 학습 내용, 학습 자료, 인공지능 기기로 나타났다. 인공지능 활용 교육은 개별학습, 참여 촉진, 흥미 유발 등의 특성을 지닌다고 인식하였다. 향후 최적화된 교육 운영을 가능하게 하는 수업 전략이나 모형 개발 등이 이루어질 필요가 있다.

Keywords

References

  1. C. I. Lim. (2019). Redirecting the research and practice of educational technology for future society and education. Journal of Educational Technology, 35(2), 253-287. DOI : 10.17232/KSET.35.2.253
  2. J. Y. Kim & K. H. Ro. (2019). A Study on the Data Collection and Convergence of Career Advisor System Using AI. Journal of Digital Convergence, 17(2), 177-185. DOI : 10.14400/JDC.2019.17.2.177
  3. R. Luckin, W. Holmes, M. Griffiths & L. B. Forcier. (2016). Intelligence unleashed: An argument for AI in education. London: Pearson.
  4. OECD. (2019). Trends shaping education 2019. Paris: OECD Publishing. DOI : 10.1787/trends_edu-2019-en.
  5. D. G. Song, M. Rice & E. Y. Oh. (2019). Participation in online courses and interaction with a virtual agent. International Review of Research in Open and Distributed Learning, 20(1), 1-21. DOI : 10.19173/irrodl.v20i1.3998
  6. H. K. Jho. (2017). The changes of higher education and the tasks of general education according to the fourth industrial revolution. Korean Journal of General Education, 11(2), 53-89.
  7. J. E. Hyun & H. J. Im. (2019). Analysis and Implications of AI Speakers as English Learning Tools. The Mirae Journal of English Language and Literature, 24(1), 201-219. https://doi.org/10.46449/MJELL.2019.02.24.1.201
  8. N. Goksel & A. Bozkurt. (2019). Artificial intelligence in education: Current insights and future perspectives. In E. Guler. & B. Karatop. (eds.). Handbook of Research on Learning in the Age of Transhumanism (pp. 224-236). IGI Global. DOI : 10.4018/978-1-5225-8431-5.ch014
  9. K. S. Noh & J. Y. Lee. (2016). Convergence study on model of job design support platform using big data and AI. Journal of Digital Convergence, 14(7), 167-174. DOI : 10.14400/JDC.2016.14.7.167
  10. K. S. Kim & Y. K. Park. (2017). A development and application of the teaching and learning model of artificial intelligence education for elementary student. Journal of The Korean Association of Information Education, 21(1), 137-147. DOI : 10.14352/jkaie.2017.21.1.137
  11. C. B. Kwan, S. W. Ham, C. H. Kim, J. S. Seo, M. H. Park & S. H. Kang. (2018). Development of predictive model for length of stay in acute stroke patients using artificial intelligence. Journal of Digital Convergence, 16(1), 231-242. DOI : 10.14400/JDC.2018.16.1.231
  12. K. M. An & Y. C. Lee. (2019). An exploratory study on artificial intelligence quality, preference and continuous usage intention: A case of online job information platform. Journal of Digital Convergence, 17(7), 73-87. DOI : 10.14400/JDC.2019.17.7.073
  13. S. P. Huang. (2018). Effects of using artificial intelligence teaching system for environmental education on environmental knowledge and attitude. Eurasia Journal of Mathematics, Science and Technology Education, 14(7), 3277-3284. DOI : 10.29333/ejmste/91248
  14. P. Lodhi, O. Mishra, S. Jain & V. Bajaj. (2018). StuA: An intelligent student assistant. International Journal of Interactive Multimedia and Artificial Intelligence, 5(2), 17-25. DOI : 10.9781/ijimai.2018.02.008
  15. J. Hill, W. R. Ford & I. G. Farreras. (2015). Real conversations with artificial intelligence: A comparison between human-human online conversations and human-chatbot conversations. Computers in human behavior, 49, 245-250. DOI : 10.1016/j.chb.2015.02.026
  16. T. Karsenti. (2019). Artificial intelligence in education: The urgent need to prepare teachers for tomorrow's schools. Formation et profession, 27(1), 112-116. DOI : 10.18162/fp.2019.a166
  17. B. M. McLaren, O. Scheuer & J. Miksatko. (2010). Supporting collaborative learning and e-discussions using artificial intelligence techniques. International Journal of Artificial Intelligence in Education, 20(1), 1-46. DOI : 10.3233/JAI-2010-0001
  18. E. Walker, N. Rummel, B. M. McLaren & K. R. Koedinger. (2007). The student becomes the master: Integrating peer tutoring with cognitive tutoring. In proceedings of Computer-Supported Collaborative Learning Conference (pp. 750-752). DOI : 10.3115/1599600.1599737
  19. S. Vajjala. (2018). Automated assessment of non-native learner essays: Investigating the role of linguistic features. International Journal of Artificial Intelligence in Education, 28(1), 79-105. DOI : 10.1007/s40593-017-0142-3
  20. S. A. Popenici & S. Kerr. (2017). Exploring the impact of artificial intelligence on teaching and learning in higher education. Research and Practice in Technology Enhanced Learning, 12(1), 1-13. DOI : 10.1186/s41039-017-0062-8
  21. Y. H. Lee. (2019). An analysis of the influence of block-type programming language-based artificial intelligence education on the learner's attitude in artificial intelligence. Journal of The Korean Association of Information Education, 23(2), 189-196. DOI : 10.14352/jkaie.2019.23.2.189
  22. C. Edwards, A. Edwards, P. R. Spence & X. Lin. (2018). I, teacher: using artificial intelligence(AI) and social robots in communication and instruction. Communication Education, 67(4), 473-480. DOI : 10.1080/03634523.2018.1502459
  23. M. Y. Ryu & S. K. Han. (2017). Image analysis of artificial intelligence recognized by elementary school students. Journal of The Korean Association of Information Education, 21(5), 527-535. DOI : 10.14352/jkaie.2017.21.5.527
  24. J. H. Park & N. M. Shin. (2017). Students' perceptions of artificial intelligence technology and artificial intelligence teachers. The Journal of Korean Teacher Education, 34(2), 169-192. DOI : 10.24211/tjkte.2017.34.2.169
  25. C. E. Osgood, G. J. Suci & P. H. Tannenbaum. (1957). The measurement of meaning. Urbana: Univer.