DOI QR코드

DOI QR Code

압전-마찰전기 복합 소재 기반의 고출력 에너지 하베스팅 기술 개발 리뷰

Review on the Recent Advances in Composite Based Highoutput Piezo-Triboelectric Energy Harvesters

  • ;
  • 박현제 (성균관대학교 물리학과) ;
  • 손민균 (성균관대학교 물리학과) ;
  • 이태형 (성균관대학교 물리학과) ;
  • 강대준 (성균관대학교 물리학과)
  • Rasheed, Aamir (Interdisciplinary Course of Physics and Chemistry, Sungkyunkwan University) ;
  • Park, Hyunje (Department of Physics, Sungkyunkwan University) ;
  • Sohn, Min Kyun (Department of Physics, Sungkyunkwan University) ;
  • Lee, Tae Hyeong (Department of Physics, Sungkyunkwan University) ;
  • Kang, Dae Joon (Department of Physics, Sungkyunkwan University)
  • 투고 : 2020.02.25
  • 심사 : 2020.03.17
  • 발행 : 2020.03.31

초록

Global effort has resulted in tremendous progress with energy harvesters that extract mechanical energy from ambient sources, convert it to electrical energy, and use it for systems such as wrist watches, mobile electronic devices, wireless sensor nodes, health monitoring, and biosensors. However, harvesting a single energy source only still pauses a great challenge in driving sustainable and maintenance-free monitoring and sensing devices. Over the last few years, research on high-performance mechanical energy harvesters at the micro and nanoscale has been directed toward the development of hybrid devices that either aim to harvest mechanical energy in addition to other types of energies simultaneously or to exploit multiple mechanisms to more effectively harvest mechanical energy. Herein, we appraise the rational designs for multiple energy harvesting, specifically state-of-the-art hybrid mechanical energy harvesters that employ multiple piezoelectric and triboelectric mechanisms to efficiently harvest mechanical energy. We identify the critical material parameters and device design criteria that lead to high-performance hybrid mechanical energy harvesters. Finally, we address the future perspectives and remaining challenges in the field.

키워드

참고문헌

  1. B. W. An, J. H. Shin, S.-Y. Kim, J. Kim, S. Ji, J. Park, Y. Lee, J. Jang, Y.-G. Park, and E. Cho, "Smart Sensor Systems for Wearable Electronic Devices," Polymers 9, 303 (2017). https://doi.org/10.3390/polym9080303
  2. A. Kaushik, R. Kumar, S. K. Arya, M. Nair, B. Malhotra, and S. Bhansali, "Organic-inorganic hybrid nanocomposite-based gas sensors for environmental monitoring," Chem. Rev. 115, 4571-4606 (2015) https://doi.org/10.1021/cr400659h
  3. L. Y. Chen, B. C.-K. Tee, A. L. Chortos, G. Schwartz, V. Tse, D. J. Lipomi, H.-S. P. Wong, M. V. McConnell, and Z. Bao, "Continuous wireless pressure monitoring and mapping with ultra-small passive sensors for health monitoring and critical care," Nat. Commun. 5, 5028 (2014). https://doi.org/10.1038/ncomms6028
  4. M. Sitti, H. Ceylan, W. Hu, J. Giltinan, M. Turan, S. Yim, and E. Diller, "Biomedical applications of untethered mobile milli/microrobots," Proc. IEEE. 103, 205-224 (2015).
  5. Z. L. Wang and W. Wu, "Nanotechnologyenabled energy harvesting for self-powered micro-/nanosystems," Angew. Chem. 51, 11700-11721 (2012) https://doi.org/10.1002/anie.201201656
  6. Z. L. Wang and J. Song, "Piezoelectric nanogenerators based on zinc oxide nanowire arrays," Science. 312, 242-246 (2006) https://doi.org/10.1126/science.1124005
  7. V. Nguyen, R. Zhu, and R. Yang, "Environmental effects on nanogenerators," Nano Energy. 14, 49-61 (2015). https://doi.org/10.1016/j.nanoen.2014.11.049
  8. K. Y. Lee, D. Kim, J. H. Lee, T. Y. Kim, M. K. Gupta, and S. W. Kim, "Unidirectional High-Power Generation via Stress-Induced Dipole Alignment from ZnSnO3 Nanocubes/Polymer Hybrid Piezoelectric Nanogenerator," Adv. Func. Mater. 24, 37-43 (2014) https://doi.org/10.1002/adfm.201301379
  9. J.-H. Lee, K. Y. Lee, B. Kumar, N. T. Tien, N.-E. Lee, and S.-W. Kim, "Highly sensitive stretchable transparent piezoelectric nanogenerators," Energy Environ. Sci. 6, 169-175 (2013) https://doi.org/10.1039/C2EE23530G
  10. J. H. Lee, H. Ryu, T. Y. Kim, S. S. Kwak, H. J. Yoon, T. H. Kim, W. Seung, and S. W. Kim, "Thermally Induced Strain-Coupled Highly Stretchable and Sensitive Pyroelectric Nanogenerators," Adv. Energy. Mater. 5 (2015)
  11. J. H. Lee, K. Y. Lee, M. K. Gupta, T. Y. Kim, D. Y. Lee, J. Oh, C. Ryu, W. J. Yoo, C. Y. Kang, and S. J. Yoon, "Highly stretchable piezoelectric-pyroelectric hybrid nanogenerator," Adv. Mater. 26, 765-769 (2014) https://doi.org/10.1002/adma.201303570
  12. K. Y. Lee, S. K. Kim, J. H. Lee, D. Seol, M. K. Gupta, Y. Kim, and S. W. Kim, "Controllable charge transfer by ferroelectric polarization mediated triboelectricity," Adv. Func. Mater. 26, 3067-3073 (2016) https://doi.org/10.1002/adfm.201505088
  13. J. H. Lee, R. Hinchet, S. K. Kim, S. Kim, and S.-W. Kim, "Shape memory polymer-based self-healing triboelectric nanogenerator," Energy Environ. Sci. 8, 3605-3613 (2015) https://doi.org/10.1039/C5EE02711J
  14. W. Seung, M. K. Gupta, K. Y. Lee, K.-S. Shin, J.-H. Lee, T. Y. Kim, S. Kim, J. Lin, J. H. Kim, and S.-W. Kim, "Nanopatterned textile-based wearable triboelectric nanogenerator," ACS Nano. 9, 3501-3509 (2015) https://doi.org/10.1021/nn507221f
  15. X. Yang and W. A. Daoud, "Triboelectric and Piezoelectric Effects in a Combined Tribo-Piezoelectric Nanogenerator Based on an Interfacial ZnO Nanostructure," Adv. Func. Mater. 26, 8194-8201 (2016) https://doi.org/10.1002/adfm.201602529
  16. Yang, Y., et al., Flexible hybrid energy cell for simultaneously harvesting thermal, mechanical, and solar energies. ACS Nano 7, 785-790 (2012). https://doi.org/10.1021/nn305247x
  17. F. R. Fan, W. Tang, and Z. L. Wang, "Flexible nanogenerators for energy harvesting and self-powered electronics," Adv. Mater. 28, 4283-4305 (2016) https://doi.org/10.1002/adma.201504299
  18. J.-H. Lee, J. Kim, T. Y. Kim, M. S. Al Hossain, S.-W. Kim, and J. H. Kim, "All-inone energy harvesting and storage devices," J. Mater. Chem. A. 4, 7983-7999 (2016) https://doi.org/10.1039/C6TA01229A
  19. Q. Zheng, B. Shi, Z. Li, and Z. L. Wang, "Recent Progress on Piezoelectric and Triboelectric Energy Harvesters in Biomedical Systems," Adv. Sci. 4, 1700029 (2017). https://doi.org/10.1002/advs.201700029
  20. Z. L. Wang, G. Zhu, Y. Yang, S. Wang, and C. Pan, "Progress in nanogenerators for portable electronics," Materials Today 15, 532-543 (2012) https://doi.org/10.1016/S1369-7021(13)70011-7
  21. J. Lowell and A. Rose-Innes, "Contact electrification," Adv. Phys. 29, 947-1023 (1980) https://doi.org/10.1080/00018738000101466
  22. G. Castle, "Contact charging between insulators," J. Electrostat. 40, 13-20 (1997). https://doi.org/10.1016/S0304-3886(97)00009-0
  23. R. Yang, Y. Qin, L. Dai, and Z. L. Wang, "Power generation with laterally packaged piezoelectric fine wires," Nat. Nanotechnol. 4, 34 (2009) https://doi.org/10.1038/nnano.2008.314
  24. X. Wang, B. Yang, J. Liu, Y. Zhu, C. Yang, and Q. He, "A flexible triboelectricpiezoelectric hybrid nanogenerator based on P (VDF-TrFE) nanofibers and PDMS/MWCNT for wearable devices," Sci. Rep. 6, 36409 (2016) https://doi.org/10.1038/srep36409
  25. S. Roundy and E. Takahashi, "A planar electromagnetic energy harvesting transducer using a multi-pole magnetic plate," Actuator A Phys. 195, 98-104 (2013) https://doi.org/10.1016/j.sna.2013.03.018
  26. L. Gu, N. Cui, L. Cheng, Q. Xu, S. Bai, M. Yuan, W. Wu, J. Liu, Y. Zhao, and F. Ma, "Flexible fiber nanogenerator with 209 V output voltage directly powers a lightemitting diode," Nano. lett. 13, 91-94 (2012) https://doi.org/10.1021/nl303539c
  27. G. Zhu, A. C. Wang, Y. Liu, Y. Zhou, and Z. L. Wang, "Functional electrical stimulation by nanogenerator with 58 V output voltage," Nano. lett. 12, 3086-3090 (2012) https://doi.org/10.1021/nl300972f
  28. W.-S. Jung, M.-G. Kang, H. G. Moon, S.-H. Baek, S.-J. Yoon, Z.-L. Wang, S.-W. Kim, and C.-Y. Kang, "High output piezo/triboelectric hybrid generator," Sci. Rep. 5, 9309 (2015) https://doi.org/10.1038/srep09309
  29. H. Van Ngoc and D. J. Kang, "Flexible, transparent and exceptionally high power output nanogenerators based on ultrathin ZnO nanoflakes," Nanoscale 8, 5059-5066 (2016) https://doi.org/10.1039/c5nr08324a
  30. Y. Zi, L. Lin, J. Wang, S. Wang, J. Chen, X. Fan, P. K. Yang, F. Yi, and Z. L. Wang, "Triboelectric-Pyroelectric-Piezoelectric Hybrid Cell for High-Efficiency Energy-Harvesting and Self-Powered Sensing," Adv. Mater. 27, 2340-2347 (2015) https://doi.org/10.1002/adma.201500121
  31. M. Han, X.-S. Zhang, B. Meng, W. Liu, W. Tang, X. Sun, W. Wang, and H. Zhang, "r-Shaped hybrid nanogenerator with enhanced piezoelectricity," ACS Nano. 7, 8554-8560 (2013) https://doi.org/10.1021/nn404023v
  32. X. Chen, M. Han, H. Chen, X. Cheng, Y. Song, Z. Su, Y. Jiang, and H. Zhang, "A wave-shaped hybrid piezoelectric and triboelectric nanogenerator based on P (VDF-TrFE) nanofibers," Nanoscale 9, 1263-1270 (2017). https://doi.org/10.1039/C6NR07781A
  33. G. Suo, Y. Yu, Z. Zhang, S. Wang, P. Zhao, J. Li, and X. Wang, "Piezoelectric and triboelectric dual effects in mechanical-energy harvesting using BaTiO3/polydimethylsiloxane composite film," ACS Appl. Mater. Interfaces 8, 34335-34341 (2016) https://doi.org/10.1021/acsami.6b11108
  34. C. Xu, X. Wang, and Z. L. Wang, "Nanowire structured hybrid cell for concurrently scavenging solar and mechanical energies," J. Amer. Chem. Soc. 131, 5866-5872 (2009) https://doi.org/10.1021/ja810158x
  35. P. Li, S. Gao, H. Cai, and L. Wu, "Theoretical analysis and experimental study for nonlinear hybrid piezoelectric and electromagnetic energy harvester," Micro. syst. Technol. 22, 727-739 (2016) https://doi.org/10.1007/s00542-015-2440-8
  36. X. Wu, A. Khaligh, and Y. Xu, "Modeling, design and optimization of hybrid electromagnetic and piezoelectric MEMS energy scavengers" Paper presented in IEEE Custom Integrated Circuits Conference in San Jose, CA, USA (177-80), 2008
  37. J. He, T. Wen, S. Qian, Z. Zhang, Z. Tian, J. Zhu, J. Mu, X. Hou, W. Geng, and J. Cho, "Triboelectric-piezoelectric-electromagnetic hybrid nanogenerator for high-efficient vibration energy harvesting and self-powered wireless monitoring system," Nano Energy. 43, 326-339 (2017). https://doi.org/10.1016/j.nanoen.2017.11.039
  38. B. P. Nabar, Z. Çelik-Butler, and D. P. Butler, "Piezoelectric ZnO nanorod carpet as a NEMS vibrational energy harvester," Nano Energy. 10, 71-82 (2014). https://doi.org/10.1016/j.nanoen.2014.07.023
  39. H. Liu, C. J. Tay, C. Quan, T. Kobayashi, and C. Lee, "Piezoelectric MEMS energy harvester for low-frequency vibrations with wideband operation range and steadily increased output power," J. Micro Electromech. S. 20, 1131-1142 (2011)
  40. B. Yang, C. Lee, R. K. Kotlanka, J. Xie, and S. P. Lim, "A MEMS rotary comb mechanism for harvesting the kinetic energy of planar vibrations," J. Micromech. Microeng. 20, 065017 (2010) https://doi.org/10.1088/0960-1317/20/6/065017
  41. W. Ma, R. Zhu, L. Rufer, Y. Zohar, and M. Wong, "An integrated floating-electrode electric microgenerator," J. Micro Electro Mech. Syst. 16, 29-37 (2007)
  42. Q. Yuan, X. Sun, D.-M. Fang, and H. Zhang, Design and microfabrication of integrated magnetic MEMS energy harvester for low frequency application, Paper presented in 16th International Conference on Solid-State Sensors, Actuators and Microsystems in Bijing China, IEEE 2, 1855-58 (2011)
  43. T. Galchev, H. Kim, and K. Najafi, "Micro power generator for harvesting low-frequency and nonperiodic vibrations," J. Micro Electro Mech. Syst. 20, 852-866 (2011)
  44. S. P. Beeby, M. J. Tudor, and N. White, "Energy harvesting vibration sources for microsystems applications," Meas. Sci. Technol. 17, R175-95 (2006) https://doi.org/10.1088/0957-0233/17/12/R01
  45. S. Roundy, P. K. Wright, and J. Rabaey, "A study of low level vibrations as a power source for wireless sensor nodes," Comp. Commun. 26, 1131-1144 https://doi.org/10.1016/S0140-3664(02)00248-7
  46. J. Briscoe and S. Dunn, "Piezoelectric nanogenerators-a review of nanostructured piezoelectric energy harvesters," Nano Energy. 14, 15-29 (2015) https://doi.org/10.1016/j.nanoen.2014.11.059
  47. Y. Hu and Z. L. Wang, "Recent progress in piezoelectric nanogenerators as a sustainable power source in self-powered systems and active sensors," Nano Energy. 14, 3-14 (2015) https://doi.org/10.1016/j.nanoen.2014.11.038
  48. I. Dakua and N. Afzulpurkar, "Piezoelectric energy generation and harvesting at the nano-scale: materials and devices," Nanomater. Nanotechnol. 3, 21 (2013) https://doi.org/10.5772/56941
  49. Z. Lin, J. Chen, and J. Yang, "Recent progress in triboelectric nanogenerators as a renewable and sustainable power source," J. Nanomater. (2016).
  50. Z. L. Wang, J. Chen, and L. Lin, "Progress in triboelectric nanogenerators as a new energy technology and self-powered sensors," Energy Environ. Sci. 8, 2250-2282 (2015) https://doi.org/10.1039/C5EE01532D
  51. Z. Gao, J. Zhou, Y. Gu, P. Fei, Y. Hao, G. Bao, and Z. L. Wang, "Effects of piezoelectric potential on the transport characteristics of metal-ZnO nanowire-metal field effect transistor," J. Appl. Phys. 105 (11), 113707 (2009). https://doi.org/10.1063/1.3125449
  52. Z. L. Wang, "Energy Harvesting Using Piezoelectric Nanowires-A Correspondence on "Energy Harvesting Using Nanowires?" by Alexe et al," Adv. Mater. 21, 1311-1315 (2009) https://doi.org/10.1002/adma.200802638
  53. Z. L. Wang, R. Yang, J. Zhou, Y. Qin, C. Xu, Y. Hu, and S. Xu, "Lateral nanowire/nanobelt based nanogenerators, piezotronics and piezophototronics," Mater. Sci. Eng. R Rep. 70, 320-329 (2010) https://doi.org/10.1016/j.mser.2010.06.015
  54. K. Y. Lee, M. K. Gupta, and S.-W. Kim, "Transparent flexible stretchable piezoelectric and triboelectric nanogenerators for powering portable electronics," Nano Energy. 14, 139-160 (2015) https://doi.org/10.1016/j.nanoen.2014.11.009
  55. E. Nour, O. Nur, and M. Willander, "Zinc oxide piezoelectric nano-generators for low frequency applications," Semicond. Sci. Technol. 32, 064005 (2017) https://doi.org/10.1088/0268-1242/32/6/064005
  56. K.-I. Park, S. Xu, Y. Liu, G.-T. Hwang, S.-J. L. Kang, Z. L. Wang, and K. J. Lee, "Piezoelectric BaTiO3 thin film nanogenerator on plastic substrates," Nano. Lette. 10, 4939-4943 (2010) https://doi.org/10.1021/nl102959k
  57. Z.-H. Lin, Y. Yang, J. M. Wu, Y. Liu, zF. Zhang, and Z. L. Wang, "BaTiO3 nanotubes-based flexible and transparent nanogenerators," J. Phys. Chem. Lett. 3, 3599-3604 (2012) https://doi.org/10.1021/jz301805f
  58. K. I. Park, M. Lee, Y. Liu, S. Moon, G. T. Hwang, G. Zhu, J. E. Kim, S. O. Kim, D. K. Kim, and Z. L. Wang, "Flexible nanocomposite generator made of BaTiO3 nanoparticles and graphitic carbons," Adv. Mater. 24, 2999-3004 (2012) https://doi.org/10.1002/adma.201200105
  59. S. Gupta, A. Tanwar, R. Mukhiya, and S. S. Kumar, "Design and Simulations of ZnObased Piezoelectric Energy Harvester," Paper presented in ISSS International Conference on Smart Materials, Structures and Systems in Bangalore, India, 5-7 July 2017,
  60. Y. Xi, J. Song, S. Xu, R. Yang, Z. Gao, C. Hu, and Z. L. Wang, "Growth of ZnO nanotube arrays and nanotube based piezoelectric nanogenerators," J. Mater. Chem. 19, 9260-9264 (2009) https://doi.org/10.1039/b917525c
  61. Y. Qiu, H. Zhang, L. Hu, D. Yang, L. Wang, B. Wang, J. Ji, G. Liu, X. Liu, and J. Lin, "Flexible piezoelectric nanogenerators based on ZnO nanorods grown on common paper substrates," Nanoscale 4, 6568-6573 (2012) https://doi.org/10.1039/c2nr31031g
  62. S. Xu, B. J. Hansen, and Z. L. Wang, "Piezoelectric-nanowire-enabled power source for driving wireless microelectronics," Nat. Commun. 1, 93 (2010) https://doi.org/10.1038/ncomms1098
  63. J. Kwon, W. Seung, B. K. Sharma, S.-W. Kim, and J.-H. Ahn, "A high performance PZT ribbon-based nanogenerator using graphene transparent electrodes," Energy Environ. Sci. 5, 8970-8975 (2012) https://doi.org/10.1039/c2ee22251e
  64. C. Dagdeviren, B. D. Yang, Y. Su, P. L. Tran, P. Joe, E. Anderson, J. Xia, V. Doraiswamy, B. Dehdashti, and X. Feng, "Conformal piezoelectric energy harvesting and storage from motions of the heart, lung, and diaphragm," Proc. Natl. Acad. Sci. 111, 1927-1932 (2014) https://doi.org/10.1073/pnas.1317233111
  65. C. Chang, V. H. Tran, J. Wang, Y.-K. Fuh, and L. Lin, "Direct-write piezoelectric polymeric nanogenerator with high energy conversion efficiency," Nano. Lett. 10, 726-731 (2010) https://doi.org/10.1021/nl9040719
  66. B. J. Hansen, Y. Liu, R. Yang, and Z. L. Wang, "Hybrid nanogenerator for concurrently harvesting biomechanical and biochemical energy," ACS Nano. 4, 3647-3652 (2010) https://doi.org/10.1021/nn100845b
  67. L. Persano, C. Dagdeviren, Y. Su, Y. Zhang, S. Girardo, D. Pisignano, Y. Huang, and J. A. Rogers, "High performance piezoelectric devices based on aligned arrays of nanofibers of poly (vinylidenefluoride-cotrifluoroethylene)," Nat. Commun. 4, 1633 (2013). https://doi.org/10.1038/ncomms2639
  68. X. Chen, H. Tian, X. Li, J. Shao, Y. Ding, N. An, and Y. Zhou, "A high performance P (VDF-TrFE) nanogenerator with selfconnected and vertically integrated fibers by patterned EHD pulling," Nanoscale 7, 11536-11544 (2015) https://doi.org/10.1039/c5nr01746g
  69. S. Cha, S. M. Kim, H. Kim, J. Ku, J. I. Sohn, Y. J. Park, B. G. Song, M. H. Jung, E. K. Lee, and B. L. Choi, "Porous PVDF as effective sonic wave driven nanogenerators," Nano. Lett. 11, 5142-5147 (2011) https://doi.org/10.1021/nl202208n
  70. Y. Mao, P. Zhao, G. McConohy, H. Yang, Y. Tong, and X. Wang, "Sponge-Like Piezoelectric Polymer Films for Scalable and Integratable Nanogenerators and Self-Powered Electronic Systems," Adv. Energy. Mater. 4, (2014)
  71. B. Kumar and S.-W. Kim, "Recent advances in power generation through piezoelectric nanogenerators," J. Mater. Chem. 21, 18946-18958 (2011) https://doi.org/10.1039/c1jm13066h
  72. T. Bateman, "Elastic moduli of single-crystal zinc oxide," J. Appl. Phys. 33, 3309-3312 (1962). https://doi.org/10.1063/1.1931160
  73. P. Gopal and N. A. Spaldin, "Polarization, piezoelectric constants, and elastic constants of ZnO, MgO, and CdO," J. Electron Mater. 35, 538-542 (2006) https://doi.org/10.1007/s11664-006-0096-y
  74. R. F. Pierret, Semiconductor device fundamentals. 2nd edn (Addison Wesley, India, 1996) pp. 470-90
  75. W. Park, G.-C. Yi, J.-W. Kim, and S.-M. Park, "Schottky nanocontacts on ZnO nanorod arrays," Appl. Phys. Lett. 82, 4358-4360 (2003) https://doi.org/10.1063/1.1584089
  76. R. Yang, Y. Qin, C. Li, G. Zhu, and Z. L. Wang, "Converting biomechanical energy into electricity by a muscle-movement-driven nanogenerator," Nano. Lett. 9, 1201-1205 (2009) https://doi.org/10.1021/nl803904b
  77. M. Lee, J. Bae, J. Lee, C.-S. Lee, S. Hong, and Z. L. Wang, "Self-powered environmental sensor system driven by nanogenerators," Energy. Environ. Sci. 4, 3359-3363 (2011) https://doi.org/10.1039/c1ee01558c
  78. K. H. Kim, K. Y. Lee, J. S. Seo, B. Kumar, and S. W. Kim, "Paper-based piezoelectric nanogenerators with high thermal stability," Small. 7, 2577-2580 (2011) https://doi.org/10.1002/smll.201100819
  79. Y. Huang, X. Duan, Y. Cui, L. J. Lauhon, K.-H. Kim, and C. M. Lieber, "Logic gates and computation from assembled nanowire building blocks," Science. 294, 1313-1317 (2001) https://doi.org/10.1126/science.1066192
  80. Z. Shao, X. Zhang, X. Wang, and S. Chang, "Electrical characteristics of Pt-ZnO Schottky nano-contact," Sci China Phys Mech. 53, 64-67 (2010)
  81. J. Liu, P. Fei, J. Song, X. Wang, C. Lao, R. Tummala, and Z. L. Wang, "Carrier density and Schottky barrier on the performance of DC nanogenerator," Nano. Lett. 8, 328-332 (2008) https://doi.org/10.1021/nl0728470
  82. D. Davies, "Harmful effects and damage to electronics by electrostatic discharges," J. Electrostat. 16, 329-342 (1985) https://doi.org/10.1016/0304-3886(85)90055-5
  83. F.-R. Fan, Z.-Q. Tian, and Z. L. Wang, "Flexible triboelectric generator," Nano Energy. 1, 328-334 (2012) https://doi.org/10.1016/j.nanoen.2012.01.004
  84. P. Shaw, "Experiments on tribo-electricity. I.-The tribo-electric series," Proc. R. Soc. Lond. A. 94, 16-33 (1917) https://doi.org/10.1098/rspa.1917.0046
  85. Z. L. Wang, "Towards self-powered nanosystems: from nanogenerators to nanopiezotronics," Adv. Func. Mater. 18, 3553-3567 (2008). https://doi.org/10.1002/adfm.200800541
  86. L. Lin, S. Wang, Y. Xie, Q. Jing, S. Niu, Y. Hu, and Z. L. Wang, "Segmentally structured disk triboelectric nanogenerator for harvesting rotational mechanical energy," Nano. Lett. 13, 2916-2923 (2013) https://doi.org/10.1021/nl4013002
  87. D. Kim, Y. Oh, B.-W. Hwang, S.-B. Jeon, S.-J. Park, and Y.-K. Choi, "Triboelectric nanogenerator based on the internal motion of powder with a package structure design," ACS Nano 10, 1017-1024 (2015) https://doi.org/10.1021/acsnano.5b06329
  88. B. Meng, W. Tang, Z.-h. Too, X. Zhang, M. Han, W. Liu, and H. Zhang, "A transparent single-friction-surface triboelectric generator and self-powered touch sensor," Energy Environ. Sci. 6, 3235-3240 (2013) https://doi.org/10.1039/c3ee42311e
  89. Wang, S., L. Lin, and Z.L. Wang, "Triboelectric nanogenerators as self-powered active sensors." Nano Energy. 11, 436-462(2015). https://doi.org/10.1016/j.nanoen.2014.10.034
  90. Y. Zi, H. Guo, Z. Wen, M.-H. Yeh, C. Hu, and Z. L. Wang, "Harvesting low-frequency (< 5 Hz) irregular mechanical energy: a possible killer application of triboelectric nanogenerator," ACS Nano. 10, 4797-4805 (2016) https://doi.org/10.1021/acsnano.6b01569
  91. Z. L. Wang, L. Lin, J. Chen, S. Niu, and Y. Zi, "Triboelectric Nanogenerator: Vertical Contact-Separation Mode", in Triboelectric Nanogenerators (Springer, New York, 2016), 23-47 (2016)
  92. S. Kim, M. K. Gupta, K. Y. Lee, A. Sohn, T. Y. Kim, K. S. Shin, D. Kim, S. K. Kim, K. H. Lee, and H. J. Shin, "Transparent flexible graphene triboelectric nanogenerators," Adv. Mater. 26, 3918-3925 (2014) https://doi.org/10.1002/adma.201400172
  93. L. Dhakar, F. E. H. Tay, and C. Lee, "Development of a broadband triboelectric energy harvester with SU-8 micropillars," J. Micro Electro Mech. Syst 24, 91-99 (2015)
  94. M. Dresselhaus and I. Thomas, "Alternative energy technologies," Nature. 414, 332-337 (2001) https://doi.org/10.1038/35104599
  95. Q. Zhang, C. S. Dandeneau, X. Zhou, and G. Cao, "ZnO Nanostructures for Dye-Sensitized Solar Cells," Adv. Mater. 21, 4087-4108 (2009) https://doi.org/10.1002/adma.200803827
  96. F. J. DiSalvo, "Thermoelectric cooling and power generation," Science. 285, 703-706 (1999) https://doi.org/10.1126/science.285.5428.703
  97. B. Poudel, Q. Hao, Y. Ma, Y. Lan, A. Minnich, B. Yu, X. Yan, D. Wang, A. Muto, and D. Vashaee, "High-thermoelectric performance of nanostructured bismuth antimony telluride bulk alloys," Science. 320, 634-638 (2008) https://doi.org/10.1126/science.1156446
  98. N. R. Alluri, A. Chandrasekhar, and S.-J. Kim, "Exalted Electric Output via Piezo- Triboelectric Coupling/Sustainable Butterfly Wing Structure Type Multiunit Hybrid Nanogenerator," ACS Sustain. Chem. Eng. 6, 1919-1933 (2018) https://doi.org/10.1021/acssuschemeng.7b03337
  99. M. Lee, R. Yang, C. Li, and Z. L. Wang, "Nanowire- Quantum Dot Hybridized Cell for Harvesting Sound and Solar Energies," The J. Phys. Chem. Lett. 1, 2929-2935 (2010) https://doi.org/10.1021/jz101195n
  100. M. Han, X. Zhang, W. Liu, X. Sun, X. Peng, and H. Zhang, "Low-frequency wide-band hybrid energy harvester based on piezoelectric and triboelectric mechanism," Sci. China. Technol. Sci. 56, 1835-1841 (2013) https://doi.org/10.1007/s11431-013-5270-x
  101. Chen Xu and Zhong Lin Wang, "Compact hybrid cell based on a convoluted nanowire structure for harvesting solar and mechanical energy," Adv. Mater. 23, 873-877 (2011) https://doi.org/10.1002/adma.201003696
  102. C. Pan, W. Guo, L. Dong, G. Zhu, and Z. L. Wang, "Optical Fiber-Based Core-Shell Coaxially Structured Hybrid Cells for Self- Powered Nanosystems," Adv. Mater. 24, 3356-3361 (2012) https://doi.org/10.1002/adma.201201315
  103. D.-Y. Lee, H. Kim, H.-M. Li, A.-R. Jang, Y.-D. Lim, S. N. Cha, Y. J. Park, D. J. Kang, and W. J. Yoo, "Hybrid energy harvester based on nanopillar solar cells and PVDF nanogenerator," Nanotechnology. 24, 175402 (2013) https://doi.org/10.1088/0957-4484/24/17/175402
  104. Y. Yang, H. Zhang, Z.-H. Lin, Y. Liu, J. Chen, Z. Lin, Y. S. Zhou, C. P. Wong, and Z. L. Wang, "A hybrid energy cell for selfpowered water splitting," Energy Environ. Sci. 6, 2429-2434 (2013) https://doi.org/10.1039/c3ee41485j
  105. Y. Yang, H. Zhang, Y. Liu, Z.-H. Lin, S. Lee, Z. Lin, C. P. Wong, and Z. L. Wang, "Silicon-based hybrid energy cell for selfpowered electrodegradation and personal electronics," ACS Nano. 7, 2808-2813 (2013) https://doi.org/10.1021/nn400361p
  106. S.-B. Jeon, D. Kim, G.-W. Yoon, J.-B. Yoon, and Y.-K. Choi, "Self-cleaning hybrid energy harvester to generate power from raindrop and sunlight," Nano Energy. 12, 636-645 (2015) https://doi.org/10.1016/j.nanoen.2015.01.039
  107. L. Zheng, G. Cheng, J. Chen, L. Lin, J. Wang, Y. Liu, H. Li, and Z. L. Wang, "A hybridized power panel to simultaneously generate electricity from sunlight, raindrops, and wind around the clock," Adv. Energy. Mater. 5, 1501152 (2015) https://doi.org/10.1002/aenm.201501152
  108. Y. Fang, J. Tong, Q. Zhong, Q. Chen, J. Zhou, Q. Luo, Y. Zhou, Z. Wang, and B. Hu, "Solution processed flexible hybrid cell for concurrently scavenging solar and mechanical energies," Nano Energy. 16, 301-309 (2015) https://doi.org/10.1016/j.nanoen.2015.06.029
  109. H. Guo, Z. Wen, Y. Zi, M. H. Yeh, J. Wang, L. Zhu, C. Hu, and Z. L. Wang, "A Water- Proof Triboelectric-Electromagnetic Hybrid Generator for Energy Harvesting in Harsh Environments," Adv. Energy. Mater. 6, (2016)
  110. H. Zhong, Z. Wu, X. Li, W. Xu, S. Xu, S. Zhang, Z. Xu, H. Chen, and S. Lin, "Graphene based two dimensional hybrid nanogenerator for concurrently harvesting energy from sunlight and water flow," Carbon. 105, 199-204 (2016) https://doi.org/10.1016/j.carbon.2016.04.030
  111. Semsudin, N.A.A., et al., "Integrated hybrid micro energy harvester based on thermal and vibration using op-amp for biomedical devices". Asian J. Sci. Res. 10, 34-42 (2017) https://doi.org/10.3923/ajsr.2017.34.42
  112. Jiang, C., et al., “Enhanced Solar Cell Conversion Efficiency of InGaN/GaN Multiple Quantum Wells by Piezo-Phototronic Effect”. ACS Nano. 11, 9405-9412 (2017). https://doi.org/10.1021/acsnano.7b04935
  113. You, M.-H., et al., "Self-Powered Flexible Hybrid Piezoelectric-Pyroelectric Nanogenerator based on Non-woven Nanofiber Membranes". J. Mater. Chem. A. 6, 3500-3509 (2018) https://doi.org/10.1039/C7TA10175A
  114. Vivekananthan, V., et al., "A sliding mode contact electrification based triboelectricelectromagnetic hybrid generator for smallscale biomechanical energy harvesting," Micro and Nano Syst Lett. 7, 1-8 (2019) https://doi.org/10.1186/s40486-019-0080-y
  115. H. Kim, S. Priya, H. Stephanou, and K. Uchino, "Consideration of impedance matching techniques for efficient piezoelectric energy harvesting," IEEE transactions on ultrasonics, IEEE. T. Ultrason. Ferr. 54, (2007)
  116. J. Briscoe, N. Jalali, P. Woolliams, M. Stewart, P. M. Weaver, M. Cain, and S. Dunn, "Measurement techniques for piezoelectric nanogenerators," Energy Environ. Sci. 6, 3035-3045 (2013) https://doi.org/10.1039/c3ee41889h
  117. S. Niu, Y. S. Zhou, S. Wang, Y. Liu, L. Lin, Y. Bando, and Z. L. Wang, "Simulation method for optimizing the performance of an integrated triboelectric nanogenerator energy harvesting system," Nano Energy. 8, 150-156 (2014) https://doi.org/10.1016/j.nanoen.2014.05.018
  118. C. Zhang, W. Tang, C. Han, F. Fan, and Z. L. Wang, "Theoretical comparison, equivalent transformation, and conjunction operations of electromagnetic induction generator and triboelectric nanogenerator for harvesting mechanical energy," Adv. Mater. 26, 3580- 3591 (2014). https://doi.org/10.1002/adma.201400207
  119. H. Yamazaki and T. Kitayama, "Pyroelectric properties of polymer-ferroelectric composites," Ferroelectrics. 33, 147-153 (1981) https://doi.org/10.1080/00150198108008080
  120. Q. Leng, L. Chen, H. Guo, J. Liu, G. Liu, C. Hu, and Y. Xi, "Harvesting heat energy from hot/cold water with a pyroelectric generator," J. Mater. Chem. A. 2, 11940-11947 (2014) https://doi.org/10.1039/C4TA01782J
  121. D. Zhu, M. J. Tudor, and S. P. Beeby, "Strategies for increasing the operating frequency range of vibration energy harvesters: a review," Meas Sci. Technol. 21, 022001 (2009) https://doi.org/10.1088/0957-0233/21/2/022001
  122. X. Wang, S. Niu, F. Yi, Y. Yin, C. Hao, K. Dai, Y. Zhang, Z. You, and Z. L. Wang, "Harvesting ambient vibration energy over a wide frequency range for self-powered electronics," ACS Nano. 11, 1728-1735 (2017) https://doi.org/10.1021/acsnano.6b07633
  123. S. Chen, X. Tao, W. Zeng, B. Yang, and S. Shang, "Quantifying Energy Harvested from Contact-Mode Hybrid Nanogenerators with Cascaded Piezoelectric and Triboelectric Units," Adv. Energy. Mater. 7, (2017)
  124. Wang, X., et al. "Flexible triboelectric and piezoelectric coupling nanogenerator based on electrospinning P(VDF-TRFE) nanowires. Paper presented in 28th International Conference on Micro Electro Mechanical Systems in Estoril," Portugal. IEEE (110-13) 2015
  125. Y. Yang, H. Zhang, S. Lee, D. Kim, W. Hwang, and Z. L. Wang, "Hybrid energy cell for degradation of methyl orange by selfpowered electrocatalytic oxidation," Nano Lett. 13, 803-808 (2013) https://doi.org/10.1021/nl3046188
  126. L. S. McCarty and G. M. Whitesides, "Electrostatic charging due to separation of ions at interfaces: contact electrification of ionic electrets," Angew. Chem. 47, 2188-2207 (2008) https://doi.org/10.1002/anie.200701812
  127. M. Han, X. Chen, B. Yu, and H. Zhang, "Coupling of piezoelectric and triboelectric effects: From theoretical analysis to experimental verification," Adv. Electron. Mater. 1, (2015)
  128. J. Zhu, X. Hou, X. Niu, X. Guo, J. Zhang, J. He, T. Guo, X. Chou, C. Xue, and W. Zhang, "The d-arched piezoelectric-triboelectric hybrid nanogenerator as a self-powered vibration sensor," Sens. Actuators A. Phys. 263, 317-325 (2017) https://doi.org/10.1016/j.sna.2017.06.012
  129. Wu, Y., et al., "Flexible composite-nanofiber based piezo-triboelectric nanogenerators for wearable electronics." J. Mater. Chem. A. 7, 13347-13355 (2019) https://doi.org/10.1039/C9TA02345C
  130. Li, M., et al., "All-in-one cellulose based hybrid tribo/piezoelectric nanogenerator." Nano. Res. 12, 1831-1835 (2019) https://doi.org/10.1007/s12274-019-2443-3
  131. Lapčinskis, L., et al., "Hybrid Tribo-Piezo-Electric Nanogenerator with Unprecedented Performance Based on Ferroelectric Composite Contacting Layers." ACS Appl. Energy Mater. 2, 4027-4032 (2019) https://doi.org/10.1021/acsaem.9b00836
  132. Chung, J., et al., "Hand-Driven Gyroscopic Hybrid Nanogenerator for Recharging Portable Devices." Adv. Sci. 5, 1801054 (2018) https://doi.org/10.1002/advs.201801054
  133. H. Kim, S. M. Kim, H. Son, H. Kim, B. Park, J. Ku, J. I. Sohn, K. Im, J. E. Jang, and J.-J. Park, "Enhancement of piezoelectricity via electrostatic effects on a textile platform," Energy Environ. Sci. 5, 8932-8936 (2012) https://doi.org/10.1039/c2ee22744d
  134. C. Xue, J. Li, Q. Zhang, Z. Zhang, Z. Hai, L. Gao, R. Feng, J. Tang, J. Liu, and W. Zhang, "A novel arch-shape nanogenerator based on piezoelectric and triboelectric mechanism for mechanical energy harvesting," Nanomaterials. 5, 36-46 (2014) https://doi.org/10.3390/nano5010036
  135. Q. Nguyen, B. H. Kim, and J. W. Kwon, "Paper-based ZnO nanogenerator using contact electrification and piezoelectric effects," Journal of Microelectromechanical Systems 24, 519-521 (2015) https://doi.org/10.1109/JMEMS.2015.2416719
  136. T. Huang, C. Wang, H. Yu, H. Wang, Q. Zhang, and M. Zhu, "Human walking-driven wearable all-fiber triboelectric nanogenerator containing electrospun polyvinylidene fluoride piezoelectric nanofibers," Nano Energy. 14, 226-235 (2015) https://doi.org/10.1016/j.nanoen.2015.01.038
  137. P. Bai, G. Zhu, Y. S. Zhou, S. Wang, J. Ma, G. Zhang, and Z. L. Wang, "Dipole-momentinduced effect on contact electrification for triboelectric nanogenerators," Nano Res. 7, 990-997 (2014) https://doi.org/10.1007/s12274-014-0461-8
  138. G. Romano, G. Mantini, A. Di Carlo, A. D'Amico, C. Falconi, and Z. L. Wang, "Piezoelectric potential in vertically aligned nanowires for high output nanogenerators," Nanotechnology. 22, 465401 (2011) https://doi.org/10.1088/0957-4484/22/46/465401
  139. X. Li, Z.-H. Lin, G. Cheng, X. Wen, Y. Liu, S. Niu, and Z. L. Wang, "3D fiber-based hybrid nanogenerator for energy harvesting and as a self-powered pressure sensor," ACS Nano. 8, 10674-10681 (2014) https://doi.org/10.1021/nn504243j
  140. Zhao, C., et al., "Hybrid piezo/triboelectric nanogenerator for highly efficient and stable rotation energy harvesting." Nano Energy. 57, 440-449 (2019) https://doi.org/10.1016/j.nanoen.2018.12.062
  141. Chen, C., et al., A fully encapsulated piezoelectric-triboelectric hybrid nanogenerator for energy harvesting from biomechanical and environmental sources. Express Polym. Lett. 13, 533-542 (2019) https://doi.org/10.3144/expresspolymlett.2019.45
  142. Y. Zhu, B. Yang, J. Liu, X. Wang, X. Chen, and C. Yang, "An integrated flexible harvester coupled triboelectric and piezoelectric mechanisms using PDMS/MWCNT and PVDF," J. Microelectromech. S. 24, 513-515 (2015) https://doi.org/10.1109/JMEMS.2015.2404037
  143. H. Li, L. Su, S. Kuang, Y. Fan, Y. Wu, Z. L. Wang, and G. Zhu, "Multilayered flexible nanocomposite for hybrid nanogenerator enabled by conjunction of piezoelectricity and triboelectricity," Nano. Res. 10, 785-793 (2017) https://doi.org/10.1007/s12274-016-1331-3
  144. G. Hassan, F. Khan, A. Hassan, S. Ali, J. Bae, and C. H. Lee, "A flat-panel-shaped hybrid piezo/triboelectric nanogenerator for ambient energy harvesting," Nanotechnology. 28, 175402 (2017) https://doi.org/10.1088/0957-4484/28/17/175402
  145. Jirayupat, C., et al.,"Piezoelectric-Induced Triboelectric Hybrid Nanogenerators Based on the ZnO Nanowire Layer Decorated on the Au/polydimethylsiloxane-Al Structure for Enhanced Triboelectric Performance", ACS Appl. Mater. Interfaces. 10, 6433-6440 (2018). https://doi.org/10.1021/acsami.7b17314
  146. Y. Xie, S. Wang, L. Lin, Q. Jing, Z.-H. Lin, S. Niu, Z. Wu, and Z. L. Wang, "Rotary triboelectric nanogenerator based on a hybridized mechanism for harvesting wind energy," ACS Nano. 7, 7119-7125 (2013) https://doi.org/10.1021/nn402477h
  147. L. Zhang, B. Zhang, J. Chen, L. Jin, W. Deng, J. Tang, H. Zhang, H. Pan, M. Zhu, and W. Yang, "Lawn structured triboelectric nanogenerators for scavenging sweeping wind energy on rooftops," Adv. Mater. 28, 1650-1656 (2016) https://doi.org/10.1002/adma.201504462
  148. T. Chen, Y. Xia, W. Liu, H. Liu, L. Sun, and C. Lee, "A hybrid flapping-blade wind energy harvester based on vortex shedding effect," J. Microelectromech. S. 25, 845-847 (2016) https://doi.org/10.1109/JMEMS.2016.2588529
  149. F.-R. Fan, L. Lin, G. Zhu, W. Wu, R. Zhang, and Z. L. Wang, "Transparent triboelectric nanogenerators and self-powered pressure sensors based on micropatterned plastic films," Nano. Lett. 12, 3109-3114 (2012) https://doi.org/10.1021/nl300988z
  150. C. K. Jeong, K. M. Baek, S. Niu, T. W. Nam, Y. H. Hur, D. Y. Park, G.-T. Hwang, M. Byun, Z. L. Wang, and Y. S. Jung, "Topographically-designed triboelectric nanogenerator via block copolymer selfassembly," Nano. Lett. 14, 7031-7038 (2014) https://doi.org/10.1021/nl503402c
  151. P. Bai, G. Zhu, Q. Jing, J. Yang, J. Chen, Y. Su, J. Ma, G. Zhang, and Z. L. Wang, "Membrane-Based Self-Powered Triboelectric Sensors for Pressure Change Detection and Its Uses in Security Surveillance and Healthcare Monitoring," Adv. Func. Mater. 24, 5807-5813 (2014) https://doi.org/10.1002/adfm.201401267
  152. W. Yang, J. Chen, G. Zhu, J. Yang, P. Bai, Y. Su, Q. Jing, X. Cao, and Z. L. Wang, "Harvesting energy from the natural vibration of human walking," ACS Nano. 7, 11317-11324 (2013) https://doi.org/10.1021/nn405175z
  153. X. Yang and W. A. Daoud, "Synergetic effects in composite-based flexible hybrid mechanical energy harvesting generator," J. Mater. Chem. A. 5, 9113-9121 (2017) https://doi.org/10.1039/C7TA01524K
  154. Y. Qian, D .J .Kang, "Poly(dimethylsiloxane)/ZnO nanoflakes/three-dimensional graphene heterostructures for high-performance flexible energy harvesters with simultaneous piezoelectric triboelectric generation," ACS Appl. Mater. Interfaces 10, 32281-32288 (2018) https://doi.org/10.1021/acsami.8b05636
  155. W. He, Y. Qian, B. S. Lee, F. Zhang, A. Rasheed, J. E. Jung, D. J. Kang, "Ultrahigh Output Piezoelectric and Triboelectric Hybrid Nanogenerators Based on ZnO Nanoflakes/Polydimethylsiloxane Composite Films," ACS Appl. Mater. Interfaces 2018, 10, 44415-44420 (2018)