DOI QR코드

DOI QR Code

Tolerance limit of nitrite exposure to hybrid grouper (Epinephelus fuscoguttatus ♀×E. lanceolatus ♂): hematological parameters and plasma components

대왕범바리(Epinephelus fuscoguttatus ♀×E. lanceolatus ♂)의 아질산 급성노출에 따른 내성한계: 혈액성상 및 혈장성분의 변화

  • Cho, Jea-Hwang (West Sea Fisheries Research Institute, National Institute of Fisheries Science) ;
  • Kim, Seok-Ryel (West Sea Fisheries Research Institute, National Institute of Fisheries Science) ;
  • Hur, Young Baek (West Sea Fisheries Research Institute, National Institute of Fisheries Science) ;
  • Lee, Kyung Mi (West Sea Fisheries Research Institute, National Institute of Fisheries Science) ;
  • Kim, Jun-Hwan (West Sea Fisheries Research Institute, National Institute of Fisheries Science)
  • 조재황 (국립수산과학원 서해수산연구소 양식산업과) ;
  • 김석렬 (국립수산과학원 서해수산연구소 양식산업과) ;
  • 허영백 (국립수산과학원 서해수산연구소 양식산업과) ;
  • 이경미 (국립수산과학원 서해수산연구소 양식산업과) ;
  • 김준환 (국립수산과학원 서해수산연구소 양식산업과)
  • Received : 2019.12.27
  • Accepted : 2020.02.18
  • Published : 2020.03.31

Abstract

Hybrid grouper (Epinephelus fuscoguttatus ♀×E. lanceolatus ♂) (mean weight 27.3±3.8 g, mean length 11.6±0.7 cm) were exposed to waterborne nitrite at 0, 100, 200, 400, 800, and 1600mg L-1 for 96 hours. The hematocrit and hemoglobin values were significantly decreased by exposure to 100 mg L-1 and 400 mg L-1, respectively. In plasma components, no significant change was observed in magnesium. Glucose was significantly increased by 200 and 400 mg L-1 nitrite but reduced by 800 mg L-1. Cholesterol was significantly decreased by 400 mg L-1 nitrite, but there was no significant change in total protein. GPT(glutamic pyruvate transaminase) was significantly increased by exposure to 200 and 400mg L-1. ALP(Alkaline phosphatase) was significantly increased by 800 mg L-1. The results of this study indicate that acute exposure to nitrite changes physiological parameters, such as hematological properties and plasma components.

본 실험에서 아질산 급성노출은 대왕범바리의 혈액학적 성상 및 혈장성분에 유의적 변화를 나타내었다. 혈액학적 성상인 Hct와 Hb는 아질산 노출에 의한 유의적 감소를 확인하였다. 혈장 성분인 glucose, cholesterol, GPT 및 ALP는 아질산 노출에 의해 유의적으로 변화를 나타냄을 확인하였다. 본 실험의 결과 아질산 노출 100mg L-1 이상의 농도는 대왕범바리의 혈액 성상 및 혈장 성분의 유의적 영향을 미치며, 800 mg L-1의 아질산 급성 노출은 대량 폐사를 유발할 수 있으나, 기존 국내 양식 대상종인 Olive flounder, P. Olivaceus는 171.043 mg L-1 (Kim et al. 2018), Yellow tail, Seriola quinqueradiata는 147 mg L-1 (Sugiyama et al. 1991)에 비해 상대적으로 높은 값을 보여 아질산 내성이 상대적으로 강함을 확인할 수 있었다.

Keywords

References

  1. Agrahari S, KC Pandey and K Gopal. 2007. Biochemical alteration induced by monocrotophos in the blood plasma of fish, Channa punctatus (Bloch). Pest. Biochem. Physiol. 88:268-272. https://doi.org/10.1016/j.pestbp.2007.01.001
  2. Ahn TY, DS Jeong, JH Kim and JC Kang. 2013. Changes of hematological constituents in the mullet, Mugil cephalus exposed to chromium. J. Fish Pathol. 26:89-97. https://doi.org/10.7847/jfp.2013.26.2.089
  3. Atwood HL, QC Fontenot, JR Tomasso and JJ Isely. 2001. Toxicity of nitrite to Nile tilapia: effect of fish size and environmental chloride. N. Am. J. Aquacult. 63:49-51. https://doi.org/10.1577/1548-8454(2001)063<0049:TONTNT>2.0.CO;2
  4. Avilez IM, AE Altran, LH Aguiar and G Moraes. 2004. Hematological responses of the Neotropical teleost matrinxa (Brycon cephalus) to environmental nitrite. Comp. Biochem. Physiol. C-Toxicol. Pharmacol. 139:135-139. https://doi.org/10.1016/j.cca.2004.10.001
  5. Bae SH, KW Kim, SK Kim, SK Kim, JH Kim and JH Kim. 2017. Lethal toxicity and hematological changes exposed to nitrate in flatfish, Paralichthys olivaceus in biofloc and seawater. Korean J. Environ. Biol. 35:373-379. https://doi.org/10.11626/KJEB.2017.35.3.373
  6. Bijvelds MJ, JA Velden, ZI Kolar and G Flik. 1998. Magnesium transport in freshwater teleosts. J. Exp. Biol. 201:1981-1990. https://doi.org/10.1242/jeb.201.13.1981
  7. Cheng CH, CX Ye, ZX Guo and AL Wang. 2017. Immune and physiological responses of pufferfish (Takifugu obscurus) under cold stress. Fish Shellfish Immunol. 64:137-145. https://doi.org/10.1016/j.fsi.2017.03.003
  8. Chen JC and Y Lee. 1997. Effects of nitrite exposure on acid - base balance, respiratory protein, and ion concentrations of giant freshwater prawn Macrobrachium rosenbergii at low pH. Arch. Environ. Contam. Toxicol. 33:290-297. https://doi.org/10.1007/s002449900256
  9. Das PC, S Ayyappan, JK Jena and BK Das. 2004a. Acute toxicity of ammonia and its sub-lethal effects on selected haematological and enzymatic parameters of mrigal, Cirrhinus mrigala (Hamilton). Aquac. Res. 35:134-143. https://doi.org/10.1111/j.1365-2109.2004.00994.x
  10. Das PC, S Ayyappan, BK Das and JK Jena. 2004b. Nitrite toxicity in Indian major carps: sublethal effect on selected enzymes in fingerlings of Catla catla, Labeo rohita and Cirrhinus mrigala. Comp. Biochem. Physiol. C-Toxicol. Pharmacol. 138:3-10. https://doi.org/10.1016/j.cca.2004.03.010
  11. Das PC, S Ayyappan, JK Jena and BK Das. 2004c. Nitrite toxicity in Cirrhinus mrigala (Ham.): acute toxicity and sub-lethal effect on selected haematological parameters. Aquaculture 235:633-644. https://doi.org/10.1016/j.aquaculture.2004.01.020
  12. David M, SB Mushigeri, R Shivakumar and GH Philip. 2004. Response of Cyprinus carpio (Linn) to sublethal concentration of cypermethrin: alterations in protein metabolic profiles. Chemosphere 56:347-352. https://doi.org/10.1016/j.chemosphere.2004.02.024
  13. De M, MA Ghaffar, Y Bkar and SK Das. 2016. Effect of temperature and diet on growth and gastric emptying time of the hybrid, Epinephelus fuscoguttatus female x E. lanceolatus male. Aquacult. Rep. 4:118-124. https://doi.org/10.1016/j.aqrep.2016.08.002
  14. Ferrario C, M Parolini, B De Felice, S Villa and A Finizio. 2018. Linking sub-individual and supra-individual effects in Daphnia magna exposed to sub-lethal concentration of chlorpyrifos. Environ. Pollut. 235:411-418. https://doi.org/10.1016/j.envpol.2017.12.113
  15. Firat O and F Kargin. 2010. Individual and combined effects of heavy metals on serum biochemistry of Nile tilapia Oreochromis niloticus. Arch. Environ. Contam. Toxicol. 58:151-157. https://doi.org/10.1007/s00244-009-9344-5
  16. Gisbert E, A Rodriguez, L Cardona, M Huertas, MA Gallardo, C Sarasquete and F Orvay-Castello. 2004. Recovery of Siberian sturgeon yearlings after an acute exposure to environmental nitrite: changes in the plasmatic ionic balance, $Na^+$-$K^+$ ATPase activity, and gill histology. Aquaculture 239:141-154. https://doi.org/10.1016/j.aquaculture.2004.03.019
  17. Grosell M and FB Jensen. 2000. Uptake and effects of nitrite in the marine teleost fish Platichthys flesus. Aquat. Toxicol. 50:97-107. https://doi.org/10.1016/S0166-445X(99)00091-0
  18. Hilmy AM, El-Domiaty NA and K Wershana. 1987. Acute and chronic toxicity of nitrite to Clarias lazera. Comp. Biochem. Physiol. C-Toxicol. Pharmacol. 86:247-253. https://doi.org/10.1016/0742-8413(87)90075-2
  19. Hrubec TC, SA Smith and JL Robertson. 1996. Nitrate toxicity: a potential problem of recirculating systems. pp. 1-8. In: Aquacultural Engineering Society Proceedings II: Successes and Failures in Commercial Recirculating Aquaculture. Northeast Regional Agricultural Engineering Service Cooperative Extension, Ithaca, NY.
  20. Huertas M, E Gisbert, A Rodriguez, L Cardona, P Williot and F Orvay-Castello. 2002. Acute exposure of Siberian sturgeon (Acipenser baeri, Brandt) yearlings to nitrite: median-lethal concentration (LC50) determination, haematological changes and nitrite accumulation in selected tissues. Aquat. Toxicol. 57:257-266. https://doi.org/10.1016/S0166-445X(01)00207-7
  21. Jeberg MV and FB Jensen. 1994. Extracellular and intracellular ionic changes in crayfish Astacus astacus exposed to nitrite at two acclimation temperatures. Aquat. Toxicol. 29:65-72. https://doi.org/10.1016/0166-445X(94)90048-5
  22. Jensen FB. 2003. Nitrite disrupts multiple physiological functions in aquatic animals. Comp. Biochem. Physiol. Part A-Mol. Integr. Physiol. 135:9-24. https://doi.org/10.1016/S1095-6433(02)00323-9
  23. Jia R, BL Liu, C Han, B Huang and JL Lei. 2016. The physiological performance and immune response of juvenile turbot (Scophthalmus maximus) to nitrite exposure. Comp. Biochem. Physiol. C-Toxicol. Pharmacol. 181:40-46.
  24. Jung TK, CS Ra, KS Joh and HG Song. 2016. Characterization of heterotrophic nitrification and aerobic denitrification by Alcaligenes faecalis NS13. Korean J. Microbiol. 52:166-174. https://doi.org/10.7845/kjm.2016.6020
  25. Kavitha C, M Ramesh, SS Kumaran and SA Lakshmi. 2012. Toxicity of Moringa oleifera seed extract on some hematological and biochemical profiles in a freshwater fish, Cyprinus carpio. Exp. Toxicol. Pathol. 64:681-687. https://doi.org/10.1016/j.etp.2011.01.001
  26. Kim JH, KW Kim, SH Bae, SK Kim, SK Kim and JH Kim. 2017. Alterations in hematological parameters and antioxidant responses in the biofloc-reared flatfish Paralichthys olivaceus following ammonia exposure. Korean J. Fish. Aquat. Sci. 50:750-755. https://doi.org/10.5657/KFAS.2017.0750
  27. Kim JH, JY Kim, LJ Lim, SK Kim, HS Choi and YB Hur. 2018. Effects of waterborne nitrite on hematological parameters and stress indicators in olive flounders, Paralichthys olivaceus, raised in bio-floc and seawater. Chemosphere 209:28-34. https://doi.org/10.1016/j.chemosphere.2018.06.082
  28. Kim JH, HJ Park, DH Kim, CW Oh, JS Lee and JC Kang. 2019. Changes in hematological parameters and heat shock proteins in juvenile sablefish depending on water temperature stress. J. Aquat. Anim. Health 31:147-153. https://doi.org/10.1002/aah.10061
  29. Kim KH, YJ Hwang and SR Kwon. 2001. Influence of daily water temperature changes on the chemiluminescent response and mortality of cultured rockfish (Sebastes schlegeli). Aquaculture 192:93-99. https://doi.org/10.1016/S0044-8486(00)00460-9
  30. Kim KH, SW Hong, HN Moon and IK Yeo. 2018. Physiological responses of the chicken grunt Parapristipoma trilineatum to high water temperature stress. Korean J. Fish. Aquat. Sci. 51:714-719. https://doi.org/10.5657/KFAS.2018.0714
  31. KMA. 2018. 2017 Abnormal Climate Report. Korea Meteorological Administration. Seoul, Korea. pp. 1-190.
  32. Kroupova H, J Machova and Z Svobodova. 2005. Nitrite influence on fish: a review. Vet. Med. 50:461. https://doi.org/10.17221/5650-vetmed
  33. Kroupova H, M Prokes, S Macova, M Penaz, V Barus, L Novotny and J Machova. 2010. Effect of nitrite on early-life stages of common carp (Cyprinus carpio L.). Environ. Toxicol. Chem. 29:535-540. https://doi.org/10.1002/etc.84
  34. Kroupova H, J Machova, V Piackova, M Flajshans, Z Svobodova and G Poleszczuk. 2006. Nitrite intoxication of common carp (Cyprinus carpio L.) at different water temperatures. Acta Vet. Brno 75:561-569. https://doi.org/10.2754/avb200675040561
  35. Knudsen PK and FB Jensen. 1997. Recovery from nitrite-induced methaemoglobinaemia and potassium balance disturbances in carp. Fish Physiol. Biochem. 16:1-10. https://doi.org/10.1007/BF00004535
  36. Le Ruyet JP, G Boeuf, JZ Infante, S Helgason and A Le Roux. 1998. Short-term physiological changes in turbot and seabream juveniles exposed to exogenous ammonia. Comp. Biochem. Physiol. Part A-Mol. Integr. Physiol. 119:511-518. https://doi.org/10.1016/S1095-6433(97)00458-3
  37. Lee HJ, HW Kim, MH Kim, DJ Kim, KH Kim, SH Bae and CH Han. 2017. Nitrite removal characteristics and application of Bosea sp. isolated from BFT system culture water. Korean J. Fish. Aquat. Sci. 50:378-387. https://doi.org/10.5657/KFAS.2017.0378
  38. Malarvizhi A, C Kavitha, M Saravanan and M Ramesh. 2012. Carbamazepine (CBZ) induced enzymatic stress in gill, liver and muscle of a common carp, Cyprinus carpio. J. King Saud Univ. Sci. 24:179-186. https://doi.org/10.1016/j.jksus.2011.01.001
  39. Medeiros RS, BA Lopez, LA Sampaio, LA Romano and RV Rodrigues. 2016. Ammonia and nitrite toxicity to false clownfish Amphiprion ocellaris. Aquac. Int. 24:985-993. https://doi.org/10.1007/s10499-015-9965-9
  40. Michael MI, AM Hilmy, NA El-Domiaty and K Wershana. 1987. Serum transaminases activity and histopathological changes in Clarias lazera chronically exposed to nitrite. Comp. Biochem. Physiol. C-Toxicol. Pharmacol. 86:255-262.
  41. Molina R, I Moreno, S Pichardo, A Jos, R Moyano, JG Monterde and A Camean. 2005. Acid and alkaline phosphatase activities and pathological changes induced in Tilapia fish (Oreochromis sp.) exposed subchronically to microcystins from toxic cyanobacterial blooms under laboratory conditions. Toxicon 46:725-735. https://doi.org/10.1016/j.toxicon.2005.07.012
  42. Oner M, G Atli and M Canli. 2008. Changes in serum biochemical parameters of freshwater fish Oreochromis niloticus following prolonged metal (Ag, Cd, Cr, Cu, Zn) exposures. Environ. Toxicol. Chem. 27:360-366. https://doi.org/10.1897/07-281R.1
  43. Ramesh M, S Anitha, RK Poopal and C Shobana. 2018. Evaluation of acute and sublethal effects of chloroquine (C18H-26CIN3) on certain enzymological and histopathological biomarker responses of a freshwater fish Cyprinus carpio. Toxicol. Rep. 5:18-27. https://doi.org/10.1016/j.toxrep.2017.11.006
  44. Sachar A and S Raina. 2014. Effect of inorganic pollutant (Nitrate) on biochemical parameters of the fish, Aspidoparia morar. Int. J. Innov. Res. Sci. Eng. Technol. 3:12568-12573.
  45. Saroglia MG, G Scarano and E Tibaldi. 1981. Acute toxicity of nitrite to sea bass (Dicentrarchus labrax) and European eel (Anguilla anguilla). J. World Aquac. Soc. 12:121-126.
  46. Sathya V, M Ramesh, RK Poopal and B Dinesh. 2012. Acute and sublethal effects in an Indian major carp Cirrhinus mrigala exposed to silver nitrate: Gill $Na^+$/$K^+$ -ATPase, plasma electrolytes and biochemical alterations. Fish Shellfish Immunol. 32:862-868. https://doi.org/10.1016/j.fsi.2012.02.014
  47. Song YB, SR Oh, JP Seo, BG Ji, BS Lim, YD Lee and HB Kim. 2005. Larval development and rearing of longtooth grouper Epinephelus bruneus in Jeju Island, Korea. J. World Aquac. Soc. 36:209-216. https://doi.org/10.1111/j.1749-7345.2005.tb00387.x
  48. Stormer J, FB Jensen and JC Rankin. 1996. Uptake of nitrite, nitrate, and bromide in rainbow trout, (Oncorhynchus mykiss): effects on ionic balance. Can. J. Fish. Aquat. Sci. 53:1943-1950. https://doi.org/10.1139/cjfas-53-9-1943
  49. Sugiyama M, H Tanaka and K Fukusho. 1991. Toxicity of total ammonia and nitrite nitrogen to young yellowtail, Seriola quinqueradiata. Bull. Natl. Res. Inst. Aquacult. (Jpn.) 19:31-33.
  50. Sun Y, CY Guo, DD Wang, XF Li, L Xiao, X Zhang and HR Lin. 2016. Transcriptome analysis reveals the molecular mechanisms underlying growth superiority in a novel grouper hybrid (Epinephelus fuscogutatus female x E. lanceolatus male). BMC Genet. 17:24. https://doi.org/10.1186/s12863-016-0328-y
  51. Tilak KS, K Veeraiah and JMP Raju. 2007. Effects of ammonia, nitrite and nitrate on hemoglobin content and oxygen consumption of freshwater fish, Cyprinus carpio (Linnaeus). J. Environ. Biol. 28:45-47.
  52. Wang W, H Wang, C Yu and Z Jiang. 2015. Acute toxicity of ammonia and nitrite to different ages of Pacific cod (Gadus macrocephalus) larvae. Chem. Speciation Bioavail. 27:147-155. https://doi.org/10.1080/09542299.2015.1113389
  53. Woo NYS and Chiu SF 1997. Metabolic and osmoregulatory responses of the sea bass Lates calcarifer to nitrite exposure. Environ. Toxicol. Water Qual. 12:257-264. https://doi.org/10.1002/(SICI)1098-2256(1997)12:3<257::AID-TOX9>3.0.CO;2-7
  54. Yildiz HY, G Koksal, G Borazan and CK Benli. 2006. Nitrite-induced methemoglobinemia in Nile tilapia, Oreochromis niloticus. J. Appl. Ichthyol. 22:427-426.
  55. Yoo JT, YH Kim, SH Song and SH Lee. 2018. Characteristics of egg and larval distributions and catch changes of anchovy in relation to abnormally high sea temperature in the South Sea of Korea. J. Korean Soc. Fish. Ocean Technol. 54:262-270. https://doi.org/10.3796/KSFOT.2018.54.3.262