DOI QR코드

DOI QR Code

Polishing characteristics of polyetherketoneketone on Candida albicans adhesion

Polyetherketoneketone의 연마 특성이 Candida albicans의 부착에 미치는 영향

  • Kim, Hyunyoung (Department of Prosthodontics, College of Dentistry, Dankook University) ;
  • Lee, Jonghyuk (Department of Prosthodontics, College of Dentistry, Dankook University) ;
  • Lee, Sung-Hoon (Department of Oral Microbiology and Immunology, College of Dentistry, Dankook University) ;
  • Baek, Dongheon (Department of Oral Microbiology and Immunology, College of Dentistry, Dankook University)
  • 김현영 (단국대학교 치과대학 치과보철학교실) ;
  • 이종혁 (단국대학교 치과대학 치과보철학교실) ;
  • 이성훈 (단국대학교 치과대학 구강미생물학교실) ;
  • 백동헌 (단국대학교 치과대학 구강미생물학교실)
  • Received : 2020.04.28
  • Accepted : 2020.07.02
  • Published : 2020.07.31

Abstract

Purpose: To compare the polishing characteristics and their influence on Candida albicans adhesion to the recently introduced polyetherketoneketone (PEKK) and the conventional polymethylmethacrylate (PMMA) denture resin material. Materials and methods: Specimens from PEKK (Group E) and PMMA (Group M) were made in dimensions of 8 mm in diameter and 2 mm in thickness. The specimens were further divided into sub-groups according to the extent of polishing (ER, MR: rough; EP, MP: polished, N = 12 each). The specimens were polished using polishing machine and SiC foil. ER and MR group specimens were polished with 600 grit SiC foil only. EP and MP groups were further polished with 800, 1,000, 1,200 grit SiC foils sequentially. To measure the surface roughness values (Sa) of specimens, atomic force microscope (AFM) was used and scanning electron microscope (SEM) observation under 1,000, and 20,000 magnifications was performed to investigate surface topography. The polished specimens were soaked in C. albicans suspension for 2 hours with shaking to promote adhesion. The attached C. albicans were detached from the surface with 10 times of pipetting. The suspension of detached C. albicans was performed by serial dilution to 103 times, and the diluted suspensions were inoculated on Sabouraud dextrose agar plates using spread plate method. After incubating the plate for 48 hours, colony forming unit (CFU)/plate of C. albicans was counted. Statistical analysis was performed using one-way ANOVA and Tukey HSD test to confirm significant difference between the groups (α=.05). Results: Average Sa value was significantly higher in MR group compared to other groups (P<.05), meaning that additional polishing steps reduced surface roughness effectively only in the PMMA specimens. There was no significant difference in Sa values between MP and EP groups. In SEM images, PEKK specimens showed numerous spikes of abraded material protruding from the surface and this phenomenon was more significant in EP group. The mean CFU/plate value was the highest in EP group and this was significant when it was compared to MP group (P<.05) which was the lowest. Conclusion: Polishing PEKK using serial SiC abrasive foil may result in higher adhesion of C. albicans. In clinic, this should be considered carefully.

목적: 최근 치과에 도입된 polyetherketoneketone (PEKK)의 연마 특성이 Candida albicans의 부착에 미치는 영향을 기존 의치상재료인 polymethylmethacrylate (PMMA)와 비교하고자 하였다. 재료 및 방법: PEKK(그룹 E)와 PMMA(그룹 M)를 사용하여 직경 8 mm, 두께 2 mm인 원판 형태 시편을 제작한 후 연마 정도에 따라 각각 2개 그룹으로 세분하였다(ER, MR: rough; EP, MP: polished, 각 그룹당 시편 12개). 연마는 SiC 연마지로 시행하였으며, ER과 MR 그룹에서는 600 grit SiC 연마지만으로, EP와 MP 그룹에서는 600, 800, 1,000, 1,200 grit SiC 연마지로 단계적으로 연마하였다. 표면의 평균 거칠기는 원자력간 현미경(AFM)을 사용하여 Sa값을 측정하였고 주사전자 현미경으로 1,000배와 20,000배 확대하여 표면을 관찰하였다. 24-well 세포배양 용기에 연마된 시편 및 C. albicans 현탁액을 넣고 37℃에서 2시간 동안 배양하여 C. albicans의 부착을 유도하였으며, 부착된 진균을 피펫팅을 통해 분리하고 현탁액을 10 배씩 단계적으로 103 배까지 희석한 후, Sabouraud dextrose 고체배지에 스프레더를 이용하여 접종하였다. 48시간 후 각 고체배지에 형성된 집락의 개수(CFU/plate)를 세어 기록하였다. 측정된 값들의 통계적 차이를 확인하기 위해 one-way ANOVA와 Tukey HSD test를 수행하고 유의수준을 0.05로 정하였다. 결과: 평균 Sa 값은 MR 그룹이 다른 그룹에 비해 유의하게 더 높게 나타나 단계적 연마지 연마법은 PMMA 시편에서만 유의한 효과가 있었음을 확인할 수 있었다 (P < .05). MP 그룹과 EP 그룹간에 Sa 값은 유의한 차이가 없었다. 주사전자현미경 관찰결과 PEKK 시편들의 표면에서 다수의 보풀 같은 돌기가 형성되어 있는 것을 볼 수 있었고 EP 그룹에서 더 심해진 것을 관찰할 수 있었다. CFU/plate의 평균값은 EP 그룹에서 가장 높게 나왔으며 가장 낮은 MP 그룹과 유의한 차이를 보였다 (P < .05). 결론: PMMA와 비교하여 PEKK에서는 단계적 연마지를 이용한 연마를 시행 시 C. albicans의 부착 증가로 이어질 수 있으며, 임상에서도 이러한 점에 대한 신중한 고려가 필요할 것으로 사료된다.

Keywords

References

  1. Murray MD, Darvell BW. The evolution of the complete denture base. Theories of complete denture retention-a review. Part 1. Aust Dent J 1993;38:216-9. https://doi.org/10.1111/j.1834-7819.1993.tb03067.x
  2. Gardner KH, Hsiao BS, Matheson RR, Wood BA. Structure, crystallization and morphology of poly (aryl ether ketone ketone). Polymer 1992;33:2483-95. https://doi.org/10.1016/0032-3861(92)91128-O
  3. Kurtz SM, Devine JN. PEEK biomaterials in trauma, orthopedic, and spinal implants. Biomaterials 2007;28:4845-69. https://doi.org/10.1016/j.biomaterials.2007.07.013
  4. Williams DF, McNamara A, Turner RM. Potential of polyetheretherketone (PEEK) and carbon-fibre-reinforced PEEK in medical applications. J Mater Sci Lett 1987;6:188-90. https://doi.org/10.1007/BF01728981
  5. Attwood T, Dawson P, Freeman J, Hoy L, Rose J, Staniland P. Synthesis and properties of polyaryletherketones. Polymer 1981;22:1096-103. https://doi.org/10.1016/0032-3861(81)90299-8
  6. Harsha A, Tewari U. Tribo performance of polyaryletherketone composites. Polym Test 2002;21:697-709. https://doi.org/10.1016/S0142-9418(01)00145-3
  7. Harsha A. An investigation on low stress abrasive wear characteristics of high performance engineering thermoplastic polymers. Wear 2011;271:942-51. https://doi.org/10.1016/j.wear.2011.03.019
  8. Geringer J, Tatkiewicz W, Rouchouse G. Wear behavior of PAEK, poly(aryl-ether-ketone), under physiological conditions, outlooks for performing these materials in the field of hip prosthesis. Wear 2011;271:2793-803. https://doi.org/10.1016/j.wear.2011.05.034
  9. Renner RP, Lee M, Andors L, McNamara TF, Brook S. The role of C. albicans in denture stomatitis. Oral Surg Oral Med Oral Pathol 1979;47:323-8. https://doi.org/10.1016/0030-4220(79)90254-8
  10. Turrell AJ. Aetiology of inflamed upper denture-bearing tissues. Br Dent J 1966;120:542-6.
  11. Theilade E, Budtz-Jorgensen E, Theilade J. Predominant cultivable microflora of plaque on removable dentures in patients with healthy oral mucosa. Arch Oral Biol 1983;28:675-80. https://doi.org/10.1016/0003-9969(83)90101-2
  12. Klotz SA, Drutz DJ, Zajic JE. Factors governing adherence of Candida species to plastic surfaces. Infect Immun 1985;50:97-101. https://doi.org/10.1128/iai.50.1.97-101.1985
  13. Webb BC, Thomas CJ, Willcox MD, Harty DW, Knox KW. Candida-associated denture stomatitis. Aetiology and management: a review. Part 1. Factors influencing distribution of Candida species in the oral cavity. Aust Dent J 1998;43:45-50. https://doi.org/10.1111/j.1834-7819.1998.tb00152.x
  14. Quirynen M, Marechal M, Busscher HJ, Weerkamp AH, Darius PL, van Steenberghe D. The influence of surface free energy and surface roughness on early plaque formation. An in vivo study in man. J Clin Periodontol 1990;17:138-44. https://doi.org/10.1111/j.1600-051X.1990.tb01077.x
  15. Kuhar M, Funduk N. Effects of polishing techniques on the surfaces of acrylic denture base resins. J Prosthet Dent 2005;93:76-85. https://doi.org/10.1016/j.prosdent.2004.10.002
  16. Sen D, Goller G, Issever H. The effect of two polishing pastes on the surface roughness of bis-acryl composite and methacrylate-based resins. J Prosthet Dent 2002;88:527-32. https://doi.org/10.1067/mpr.2002.129335
  17. Teughels W, Van Assche N, Sliepen I, Quirynen M. Effect of material characteristics and/surface topography on biofilm development. Clin Oral Implant Res 2006;17:68-81. https://doi.org/10.1111/j.1600-0501.2006.01353.x
  18. Bollen CM, Papaioanno W, Van Eldere J, Schepers E, Quirynen M, van Steenberghe D. The influence of abutment surface roughness on plaque accumulation and peri-implant mucositis. Clin Oral Implants Res 1996;7:201-11. https://doi.org/10.1034/j.1600-0501.1996.070302.x
  19. Verran J, Maryan CJ. Retention of Candida albicans on acrylic resin and silicone of different surface topography. J Prosthet Dent 1997;77:535-9. https://doi.org/10.1016/S0022-3913(97)70148-3
  20. Nevzatoglu EU, Ozcan M, Kulak-Ozkan Y, Kadir T. Adherence of Candida albicans to denture base acrylics and silicone-based resilient liner materials with different surface finishes. Clin Oral Investig 2007;11:231-6. https://doi.org/10.1007/s00784-007-0106-3
  21. Bayer S, Komor N, Kramer A, Albrecht D, Mericske-Stern R, Enkling N. Retention force of plastic clips on implant bars: a randomized controlled trial. Clin Oral Implants Res 2012;23:1377-84. https://doi.org/10.1111/j.1600-0501.2011.02312.x
  22. Costa-Palau S, Torrents-Nicolas J, Brufau-de Barbera M, Cabratosa-Termes J. Use of polyetheretherketone in the fabrication of a maxillary obturator prosthesis: a clinical report. J Prosthet Dent 2014;112:680-2. https://doi.org/10.1016/j.prosdent.2013.10.026
  23. Uhrenbacher J, Schmidlin PR, Keul C, Eichberger M, Roos M, Gernet W, Stawarczyk B. The effect of surface modification on the retention strength of polyetheretherketone crowns adhesively bonded to dentin abutments. J Prosthet Dent 2014;112:1489-97. https://doi.org/10.1016/j.prosdent.2014.05.010
  24. Stawarczyk B, Thrun H, Eichberger M, Roos M, Edelhoff D, Schweiger J, Schmidlin PR. Effect of different surface pretreatments and adhesives on the load-bearing capacity of veneered 3-unit PEEK FDPs. J Prosthet Dent 2015;114:666-73. https://doi.org/10.1016/j.prosdent.2015.06.006
  25. Taufall S, Eichberger M, Schmidlin PR, Stawarczyk B. Fracture load and failure types of different veneered polyetheretherketone fixed dental prostheses. Clin Oral Investig 2016;20:2493-500. https://doi.org/10.1007/s00784-016-1777-4
  26. Santing HJ, Meijer HJ, Raghoebar GM, Ozcan M. Fracture strength and failure mode of maxillary implant-supported provisional single crowns: a comparison of composite resin crowns fabricated directly over PEEK abutments and solid titanium abutments. Clin Implant Dent Relat Res 2012;14:882-9. https://doi.org/10.1111/j.1708-8208.2010.00322.x
  27. Binnig G, Quate CF, Gerber C. Atomic force microscope. Phys Rev Lett 1986;56:930-3. https://doi.org/10.1103/PhysRevLett.56.930
  28. Etxeberria M, Escuin T, Vinas M, Ascaso C. Useful surface parameters for biomaterial discrimination. Scanning 2015;37:429-37. https://doi.org/10.1002/sca.21232
  29. Hokkirigawa K, Kato K. An experimental and theoretical investigation of ploughing, cutting and wedge formation during abrasive wear. Tribol Int 1988;21:51-7. https://doi.org/10.1016/0301-679X(88)90128-4
  30. Burwell JT. Survey of possible wear mechanisms. Wear 1957;1:119-41. https://doi.org/10.1016/0043-1648(57)90005-4
  31. Brinksmeier E, Riemer O, Gessenharter A. Finishing of structured surfaces by abrasive polishing. Precis Eng 2006;30:325-36. https://doi.org/10.1016/j.precisioneng.2005.11.012