DOI QR코드

DOI QR Code

적층가공과 절삭가공으로 제작한 의치상과 직접 첨상용 레진 간의 인장결합강도 비교

Tensile bond strength of chairside reline resin to denture bases fabricated by subtractive and additive manufacturing

  • 김효성 (원광대학교 치과대학 치과보철학교실) ;
  • 정지혜 (원광대학교 치과대학 치과보철학교실) ;
  • 배지명 (원광대학교 치과대학 치과생체재료학교실) ;
  • 김정미 (원광대학교 치과병원 치과기공실) ;
  • 김유리 (원광대학교 치과대학 치과보철학교실)
  • Kim, Hyo-Seong (Department of Prosthodontics, School of Dentistry, Wonkwang University) ;
  • Jung, Ji-Hye (Department of Prosthodontics, School of Dentistry, Wonkwang University) ;
  • Bae, Ji-Myung (Department of Dental Biomaterials, School of Dentistry, Wonkwang University) ;
  • Kim, Jeong-Mi (Dental Laboratory, Wonkwang University Dental Hospital) ;
  • Kim, Yu-Lee (Department of Prosthodontics, School of Dentistry, Wonkwang University)
  • 투고 : 2020.03.03
  • 심사 : 2020.05.28
  • 발행 : 2020.07.31

초록

목적:본 연구의 목적은 절삭가공과 적층가공으로 제작한 의치상과 직접 첨상용 레진과의 인장결합강도를 열중합형 의치상과 직접 첨상용 레진의 인장 결합강도와 비교 및 평가하여 절삭가공과 적층가공으로 제작한 의치상의 직접 첨상을 임상에 활용하고자 하는 것이다. 재료 및 방법:열중합형 의치상 레진(Lucitone 199), 절삭가공용 의치상 레진(VITA VIONIC BASE), 적층가공용 의치상 레진(NextDent Base)을 이용해 가로 25 mm × 세로 25 mm × 높이 3 mm의 직육면체 형태로 제작하였다. 제작한 의치상 레진 시편을 30일간 37℃ 증류수에 보관한 뒤, 건조하여 자가중합형 polyethyl methacrylate (PEMA) 직접 첨상용 레진(REBASE II Normal)을 사용해 결합하였다. 절삭가공과 적층가공용 의치상 레진을 실험군으로, 열중합형 의치상 레진을 대조군으로 설정하고 각 군 당 10개의 시편을 제작하였다. 모든 시편을 24시간 동안 37℃ 증류수에 보관한 뒤 꺼내어 만능시험기를 이용해 10 mm/min의 cross head speed로 인장결합강도를 측정하였고, 파절 양상을 관찰하여 접착 파절, 응집 파절, 혼합 파절로 분류하였다. 의치상의 제작 방법에 따른 직접 첨상용 레진과의 인장결합강도를 일원배치 분산분석으로 분석하였고 사후검정(Bonferroni's method)을 시행하였다 (α= .05). 결과:절삭가공용 의치상 레진과 직접 첨상용 레진과의 인장결합강도(2.33 ± 0.39 MPa)는 열중합형 의치상과 직접 첨상용 레진과의 인장결합강도(2.45 ± 0.39 MPa)와 통계적으로 유의성 있는 차이가 없었다 (P > .999). 적층가공한 의치상 레진과 직접 첨상용 레진과의 인장결합강도(1.23 ± 0.36 MPa)는 나머지 두 군보다 유의성 있게 낮았다 (P < .001). 열중합형과 절삭가공한 의치상에서는 혼합 파절이 가장 많이 나타났으며, 적층가공한 의치상에서는 혼합 파절과 접착 파절이 동일한 빈도로 나타났다. 결론:직접 첨상용 레진과 다양한 방법으로 제작한 의치상의 인장결합강도를 비교하였을 때 적층가공으로 제작한 의치상은 절삭가공으로 제작한 의치상, 열중합형 의치상보다 유의하게 낮은 인장결합강도를 보였다.

Purpose: The purpose of this study was to compare and evaluate the tensile bond strength of chairside reline resin to denture base resin fabricated by different methods (subtractive manufacturing, additive manufacturing, and conventional heat-curing). Materials and methods: Denture base specimens were fabricated as cuboid specimens with a width of 25 mm × length 25 mm × height 3 mm by subtractive manufacturing (VITA VIONIC BASE), additive manufacturing (NextDent Base) and conventional heat-curing (Lucitone 199). After storing the specimens in distilled water at 37℃ for 30 days and drying them, they were relined with polyethyl methacrylate (PEMA) chairside reline resin (REBASE II Normal). The subtractive and additive manufacturing groups were set as the experimental group, and the heat-curing group was set as the control group. Ten specimens were prepared for each group. After storing all bound specimens in distilled water at 37℃ for 24 hours, the tensile bond strength between denture bases and chairside reline resin was measured by a universal testing machine at a crosshead speed of 10 mm/min. The fracture pattern of each specimen was analyzed and classified into adhesive failure, cohesive failure, and mixed failure. Tensile bond strength, according to the fabrication method, was analyzed by 1-way ANOVA and Bonferroni's method (α=.05). Results: Mean tensile bond strength of the heat-curing group (2.45 ± 0.39 MPa) and subtractive manufacturing group (2.33 ± 0.39 MPa) had no significant difference (P>.999). The additive manufacturing group showed significantly lower tensile bond strength (1.23 ± 0.36 MPa) compared to the other groups (P<.001). Most specimens of heat-curing and subtractive manufacturing groups had mixed failure, but mixed failure and adhesive failure showed the same frequency in additive manufacturing group. Conclusion: The mean tensile bond strength of the subtractive manufacturing group was not significantly different from the heat-curing group. The additive manufacturing group showed significantly lower mean tensile bond strength than the other two groups.

키워드

참고문헌

  1. Tallgren A. The continuing reduction of the residual alveolar ridges in complete denture wearers: A mixed-longitudinal study covering 25 years. J Prosthet Dent 1972;27:120-32. https://doi.org/10.1016/0022-3913(72)90188-6
  2. Bowman JF, Javid NS. Relining and rebasing techniques. Dent Clin North Am 1977;21:369-78.
  3. Leles CR, Machado AL, Vergani CE, Giampaolo ET, Pavarina AC. Bonding strength between a hard chairside reline resin and a denture base material as influenced by surface treatment. J Oral Rehabil 2001;28:1153-7. https://doi.org/10.1046/j.1365-2842.2001.00786.x
  4. Craig RG. Restorative dental materials. 8th ed. St. Louis: CV Mosby, 1989. p. 509-59.
  5. Arena CA, Evans DB, Hilton TJ. A comparison of bond strengths among chairside hard reline materials. J Prosthet Dent 1993;70:126-31. https://doi.org/10.1016/0022-3913(93)90006-A
  6. da Cruz Perez LE, Machado AL, Canevarolo SV, Vergani CE, Giampaolo ET, Pavarina AC. Effect of reline material and denture base surface treatment on the impact strength of a denture base acrylic resin. Gerodontology 2010;27:62-9. https://doi.org/10.1111/j.1741-2358.2009.00292.x
  7. Goodacre CJ, Garbacea A, Naylor WP, Daher T, Marchack CB, Lowry J. CAD/CAM fabricated complete dentures: Concepts and clinical methods of obtaining required morphological data. J Prosthet Dent 2012;107:34-46. https://doi.org/10.1016/S0022-3913(12)60015-8
  8. Bidra AS, Taylor TD, Agar JR. Computer-aided technology for fabricating complete dentures: Systematic review of historical background, current status, and future perspectives. J Prosthet Dent 2013;109:361-6. https://doi.org/10.1016/S0022-3913(13)60318-2
  9. Kattadiyil MT, AlHelal A. An update on computer-engineered complete dentures: A systematic review on clinical outcomes. J Prosthet Dent 2017;117:478-85. https://doi.org/10.1016/j.prosdent.2016.08.017
  10. Goodacre BJ, Goodacre CJ, Baba NZ, Kattadiyil MT. Comparison of denture base adaptation between CAD-CAM and conventional fabrication techniques. J Prosthet Dent 2016;116:249-56. https://doi.org/10.1016/j.prosdent.2016.02.017
  11. Ohkubo C, Park EJ, Kim TH, Kurtz KS. Digital relief of the mental foramen for a CAD/CAM-fabricated mandibular denture. J Prosthodont 2018;27:189-92. https://doi.org/10.1111/jopr.12476
  12. Steinmassl PA, Klaunzer F, Steinmassl O, Dumfahrt H, Grunert I. Evaluation of currently available CAD/CAM denture systems. Int J Prosthodont 2017;30:116-22. https://doi.org/10.11607/ijp.5031
  13. Berman B. 3-D printing: The new industrial revolution. Business Horizons 2012;55:155-62. https://doi.org/10.1016/j.bushor.2011.11.003
  14. Azari A, Nikzad S. The evolution of rapid prototyping in dentistry: a review. Rapid Prototyp J 2009;15;216-25. https://doi.org/10.1108/13552540910961946
  15. Wu D, Zhao Z, Zhang Q, Qi HJ, Fang D. Mechanics of shape distortion of DLP 3D printed structures during UV post-curing. Soft Matter 2019;15:6151-9. https://doi.org/10.1039/C9SM00725C
  16. Alharbi N, Wismeijer D, Osman RB. Additive manufacturing techniques in prosthodontics: Where do we currently stand? A critical review. Int J Prosthodont 2017;30:474-84. https://doi.org/10.11607/ijp.5079
  17. Lee S, Hong SJ, Paek J, Pae A, Kwon KR, Noh K. Comparing accuracy of denture bases fabricated by injection molding, CAD/CAM milling, and rapid prototyping method. J Adv Prosthodont 2019;11:55-64. https://doi.org/10.4047/jap.2019.11.1.55
  18. Takahashi Y, Chai J. Shear bond strength of denture reline polymers to denture base polymers. Int J Prosthodont 2001;14:271-5.
  19. Ahmad F, Dent M, Yunus N. Shear bond strength of two chemically different denture base polymers to reline materials. J Prosthodont 2009;18:596-602. https://doi.org/10.1111/j.1532-849x.2009.00481.x
  20. Mese A, Guzel KG. Effect of storage duration on the hardness and tensile bond strength of silicone- and acrylic resin-based resilient denture liners to a processed denture base acrylic resin. J Prosthet Dent 2008;99:153-9. https://doi.org/10.1016/S0022-3913(08)60032-3
  21. Hamanaka I, Shimizu H, Takahashi Y. Bond strength of a chairside autopolymerizing reline resin to injectionmolded thermoplastic denture base resins. J Prosthodont Res 2017;61:67-72. https://doi.org/10.1016/j.jpor.2016.04.006
  22. Vallittu PK, Ruyter IE, Nat R. The swelling phenomenon of acrylic resin polymer teeth at the interface with denture base polymers. J Prosthet Dent 1997;78:194-9. https://doi.org/10.1016/S0022-3913(97)70125-2
  23. Vallittu PK, Ruyter IE. Swelling of poly(methyl methacrylate) resin at the repair joint. Int J Prosthodont 1997;10:254-8.
  24. Bunch J, Johnson GH, Brudvik JS. Evaluation of hard direct reline resins. J Prosthet Dent 1987;57:512-9. https://doi.org/10.1016/0022-3913(87)90027-8
  25. Maeda T, Hong G, Sadamori S, Hamada T, Akagawa Y. Durability of peel bond of resilient denture liners to acrylic denture base resin. J Prosthodont Res 2012;56:136-41. https://doi.org/10.1016/j.jpor.2011.05.001
  26. Lung CYK, Darvell BW. Minimization of the inevitable residual monomer in denture base acrylic. Dent Mater 2005;21:1119-28. https://doi.org/10.1016/j.dental.2005.03.003
  27. Tanasamanchoke C, Wiwatwarrapan C. Tensile bond strength between three hard reline materials and denture base resin influenced by methyl formate-methyl acetate. J Dent Assoc Thai 2019;69:8-19.
  28. Vallittu PK, Lassila VP, Lappalainen R. Wetting the repair surface with methyl methacrylate affects the transverse strength of repaired heat-polymerized resin. J Prosthet Dent 1994;72:639-43. https://doi.org/10.1016/0022-3913(94)90297-6
  29. Kim JH, Choe HC, Son MK. Evaluation of adhesion of reline resins to the thermoplastic denture base resin for non-metal clasp denture. Dent Mater J 2014;33:32-8. https://doi.org/10.4012/dmj.2013-121
  30. Minami H, Suzuki S, Minesaki Y, Kurashige H, Tanaka T. In vitro evaluation of the influence of repairing condition of denture base resin on the bonding of autopolymerizing resins. J Prosthet Dent 2004;91:164-70. https://doi.org/10.1016/j.prosdent.2003.10.023