DOI QR코드

DOI QR Code

Antibacterial Activity of Essential Oils from Pinaceae Leaves Against Fish Pathogens

어병 세균에 대한 소나무과 잎 정유의 항세균 효과

  • HAM, Youngseok (Division of Wood Chemistry, Department of Forest Products, National Institute of Forest Science) ;
  • YANG, Jiyoon (Division of Wood Chemistry, Department of Forest Products, National Institute of Forest Science) ;
  • CHOI, Won-Sil (National Instrumentation Center for Environmental Management, Seoul National University) ;
  • AHN, Byoung-Jun (Division of Wood Chemistry, Department of Forest Products, National Institute of Forest Science) ;
  • PARK, Mi-Jin (Division of Wood Chemistry, Department of Forest Products, National Institute of Forest Science)
  • Received : 2020.04.07
  • Accepted : 2020.06.15
  • Published : 2020.07.25

Abstract

Fish pathogens cause not only economic damages to fish farming but also infectious pathogens known as a zoonotic agent. Since the continued use of antibiotics to control fish pathogens entails side effects, materials of natural origin need to be developed. The purpose of this study is to discover coniferous essential oils with excellent antibacterial effects in order to develop antibiotic alternatives. We have extracted essential oils using hydro-distillation from the leaves of Abies holophylla, Pinus thunbergii, Pinus parviflora, Tsuga sieboldii, and Pinus rigitaeda, which are all Pinaceae family. And, we have evaluated antibacterial activity with the extracted essential oils against Edwardsiella tarda, Photobacterium damselae, Streptococcus parauberis, and Lactococcus garvieae, which are fish pathogens. As a result, the essential oils from A. holophylla and P. thunbergii showed the selectively strong antibacterial activity against E. tarda and P. damselae, which are gram-negative bacteria. From GC-MS analysis, it was identified that main component of A. holophylla essential oils are (-)-bornyl acetate (29.45%), D-limonene (20.47%), and camphene (11.73%), and that of P. thunbergii essential oils is α-pinene (59.81%). In addition, we found three compounds: neryl acetate, (-)-borneol, and (-)-carveol, which are oxygenated monoterpenes. These exist in a very small amount but exhibit the same efficacy as essential oil. Therefore, we expect that A. holophylla and P. thunbergii essential oils having excellent growth inhibitory effect against gram-negative fish pathogens can be used as biological products such as feed additives and fishery products.

어병 세균은 어류 양식업의 경제적 피해 뿐만 아니라, 인수공통감염원으로 알려진 전염성 병원균이다. 어병 세균을 제어하기 위해 지속적인 항생제의 사용은 부작용이 수반되기 때문에, 천연 유래 소재의 개발이 요구된다. 본 연구에서는 항생제대체제 개발을 위해 항세균효과가 우수한 침엽수 정유를 발굴하고자 하였다. 소나무과에 속하는 전나무 (Abies holophylla), 곰솔 (Pinus thunbergii), 섬잣나무 (Pinus parviflora), 솔송 (Tsuga sieboldii), 리기테다소나무 (Pinus rigitaeda)의 잎에서 hydro-distillation법을 이용하여 정유를 추출하였으며, 추출된 정유는 어병 세균인 Edwardsiella tarda, Photobacterium damselae, Streptococcus parauberis, Lactococcus garivieae에 대하여 항균력을 평가하였다. 그 결과, 전나무와 곰솔 잎 정유가 그람 음성 세균인 E. tarda와 P. damselae에 대하여 선택적으로 강한 항균력을 나타냈다. GC-MS 분석 결과, 전나무 잎 정유의 주요 성분은 (-)-bornyl acetate (29.45%), D-limonene (20.47%), camphene (11.73%)이고, 곰솔 잎 정유의 주요 성분은 α-pinene (59.81%)으로 각각 확인되었다. 또한, 미량으로 존재하지만 정유와 동일한 효능을 나타내는 유효 성분으로 oxygenated monoterpenes인 neryl acetate, (-)-borneol, (-)-carveol의 세가지 화합물을 구명하였다. 따라서 그람 음성어병세균의 생장억제효과가 우수한 전나무와 곰솔 잎 정유는 사료 첨가제, 수산용 의약품 등 생물학적 제제로 활용 될 수 있을 것으로 사료된다.

Keywords

References

  1. Ali, B., Al-Wabel, N.A., Shams, S., Ahamad, A., Khan, S.A., Anwar, F. 2015. Essential oils used in aromatherapy: A systemic review. Asian Pacific Journal of Tropical Biomedicine 5(8): 601-611. https://doi.org/10.1016/j.apjtb.2015.05.007
  2. Ahn, C., Park, M.J., Kim, J.W., Yang, J., Lee, S.S., Jeung, E.B. 2018. Cytotoxic evaluation of plant essential oils in human skin and lung cells. Journal of the Korean Wood Science and Technology 46(2): 166-177. https://doi.org/10.5658/WOOD.2018.46.2.166
  3. Amorati, R., Foti, M.C., Valgimigli, L. 2013. Antioxidant activity of essential oils. Journal of Agricultural and Food Chemistry 61(46): 10835- 10847. https://doi.org/10.1021/jf403496k
  4. Aumeeruddy Elalfi, Z., Gurib-Fakim, A., Mahomoodally, F. 2015. Antimicrobial, antibiotic potentiating activity and phytochemical profile of essential oils from exotic and endemic medicinal plants of mauritius. Industrial Crops and Products 71: 197-204. https://doi.org/10.1016/j.indcrop.2015.03.058
  5. Ayvaz, A., Sagdic, O., Karaborklu, S., Ozturk, I. 2010. Insecticidal activity of the essential oils from different plants against three stored-product insects. Journal of Insect Science 10(1): 21-32.
  6. Aziz, Z.A.A., Ahmad, A., Setapar, S.H.M., Karakucuk, A., Azim, M.M., Lokhat, D., Rafatullah, M., Ganash, M., Kamal, M.A., Ashraf, G.M. 2018. Essential oils: Extraction techniques, pharmaceutical and therapeutic potential - a review. Current Drug Metabolism 19(13): 1100-1110. https://doi.org/10.2174/1389200219666180723144850
  7. Bakkali, F., Averbeck, S., Averbeck, D., Idaomar, M. 2008. Biological effects of essential oils: A review. Food and Chemical Toxicology 46(2): 446-475. https://doi.org/10.1016/j.fct.2007.09.106
  8. Bock, A., Sawers, G. 1996. Escherichia coli and Salmonella: Cellular and Molecular Biology, 2nd edition. Fermentation, pp. 262-282.
  9. Bouazama, S., Hicham, H., Costa, J., Desjobert, J.M., Talbaoui, A., Tabyaoui, M. 2017. Chemical composition and antibacterial activity of the essential oils of Lavandula pedunculata and Lavandula dentata. Journal of Materials and Environmental Sciences 8: 2154-2160.
  10. Bouyahya, A., Bakri, Y., Et-Touys, A., Talbaoui, A., Khouchlaa, A., Charfi, S., Abrini, J., Dakka, N. 2017. Resistance to antibiotics and mechanisms of action of essential oils against bacteria. Phytotherapie. DOI 10.1007/s10298-017-1118-z.
  11. Bulfon, C., Volpatti, D., Galeotti, M. 2013. Current research on the use of plant-derived products in farmed fish. Aquaculture Research 46(3): 513-551. https://doi.org/10.1111/are.12238
  12. Cabello, F. 2006. Heavy use of prophylactic antibiotics in aquaculture: A growing problem for human and animal health and for the environment. Environmental Microbiology 8(7): 1137-1144. https://doi.org/10.1111/j.1462-2920.2006.01054.x
  13. Cha, J.D. 2007. Chemical composition and antibacterial activity against oral bacteria by the essential oil of Artemisia iwayomogi. Journal of Bacteriology and Virology 37(3): 129-136. https://doi.org/10.4167/jbv.2007.37.3.129
  14. Cho, M.Y., Kim, M.S., Kwon, M.G., Jee, B .Y., Choi, H.S., Choi, D.L., Park, G.H., Lee, C.H., Kim, J.D., Lee, J.S., Oh, Y.K., Lee, D.C., Park, S.H., Park, M.A. 2007. Epidemiological study of bacterial diseases of cultured olive flounder, Paralichthys olivaceus from 2005 to 2006 in korea. Journal of Aquaculture 20(1): 61-70.
  15. Choksi, T.T., Dadani, F. 2017. Reviewing the emergence of Lactococcus garvieae: A case of catheter associated urinary tract infection caused by Lactococcus garvieae and Escherichia coli coinfection. Case Reports in Infectious Diseases 2017: 1-4. https://doi.org/10.1155/2017/5921865
  16. Chouhan, S., Sharma, K., Guleria, S. 2017. Antimicrobial activity of some essential oils-present status and future perspectives. Medicines 4(3): 58-79. https://doi.org/10.3390/medicines4030058
  17. Cunha, J., Heinzmann, B., Baldisserotto, B. 2018. The effects of essential oils and their major compounds on fish bacterial pathogens-a review. Journal of Applied Microbiology 125(2): 328-344. https://doi.org/10.1111/jam.13911
  18. D’agostino, M., Tesse, N., Frippiat, J.P., Machouart, M., Debourgogne, A. 2019. Essential oils and their natural active compounds presenting antifungal properties. Molecules 24(20): 3713-3734. https://doi.org/10.3390/molecules24203713
  19. Diao, W.R., Zhang, L.L., Feng, S.S., Xu, J.G. 2014. Chemical composition, antibacterial activity, and mechanism of action of the essential oil from Amomum kravanh. Journal of Food Protection 77(10): 1740-1746. https://doi.org/10.4315/0362-028X.JFP-14-014
  20. Djabou, N., Lorenzi, V., Guinoiseau, E., Andreani, S., Giuliani, M.C., Desjobert, J.M., Bolla, J.M., Costa, J., Berti, L., Luciani, A., Muselli, A. 2013. Phytochemical composition of Corsican teucrium essential oils and antibacterial activity against foodborne or toxi-infectious pathogens. Food Control 30(1): 354-363. https://doi.org/10.1016/j.foodcont.2012.06.025
  21. Erfanmanesh, A., Soltani, M., Pirali, E., Mohammadian, S., Taherimirghaed, A. 2012. Genetic characterization of Streptococcus iniae in diseased farmed rainbow trout (Onchorhynchus mykiss) in iran. The Scientific World Journal 7: 1-6.
  22. Grenni, P., Ancona V., Barra Caracciolo, A. 2017. Ecological effects of antibiotics on natural ecosystems: A review. Microchemical Journal 136: 25-39. https://doi.org/10.1016/j.microc.2017.02.006
  23. Guimaraes, A.C., Meireles, L.M., Lemos, M.F., Guimaraes, M.C.C., Endringer, D.C., Fronza, M., Scherer, R. 2019. Antibacterial activity of terpenes and terpenoids present in essential oils. Molecules 24(13): 2471-2483. https://doi.org/10.3390/molecules24132471
  24. Ham, Y., Kim, T.J. 2019. Conditions for preparing Glycyrrhiza uralensis extract for inhibiting biofilm formation of Streptococcus mutans. Journal of the Korean Wood Science and Technology 47(2): 178-188. https://doi.org/10.5658/WOOD.2019.47.2.178
  25. Hammerschmidt, F., Clark, A., Soliman, F., el-Kashoury, E.S.A., el-Kawy, M., el-Fishawy, A. 1993. Chemical composition and antimicrobial activity of essential oils of jasonia candicans and J. Montana. Planta medica 59(1): 68-70. https://doi.org/10.1055/s-2006-959607
  26. Han, H.J., Kim, D.H., Lee, D.C., Kim, S.M., Park, S.I. 2006. Pathogenicity of edwardsiella tarda to olive flounder, Paralichthys olivaceus (Temminck & Schlegel). Journal of Fish Diseases 29(10): 601-609. https://doi.org/10.1111/j.1365-2761.2006.00754.x
  27. Hirai, Y., Asahata-Tago, S., Ainoda, Y., Fujita, T., Kikuchi, K. 2015. Edwardsiella tarda bacteremia. A rare but fatal water- and foodborne infection: Review of the literature and clinical cases from a single centre. The Canadian Journal of Infectious Diseases and Medical Microbiology 26(6): 313-318. https://doi.org/10.1155/2015/702615
  28. Hong, E.J., Na, K.J., Choi, I.G., Choi, K.C., Jeung, E.B. 2004. Antibacterial and antifungal effects of essential oils from coniferous trees. Biological and Pharmaceutical Bulletin 27(6): 863-866. https://doi.org/10.1248/bpb.27.863
  29. Hundenborn, J., Thurig, S., Kommerell, M., Haag, H., Nolte, O. 2013. Severe wound infection with Photobacterium damselae ssp. damselae and Vibrio harveyi, following a laceration injury in marine environment: A case report and review of the literature. Case Reports in Medicine 2013(5): 610-632.
  30. Hussain, A., Anwar, F., Shahid, M., Basra, S., Przybylski, R. 2010. Chemical composition, and antioxidant and antimicrobial activities of essential oil of spearmint (Mentha spicata L.) from Pakistan. The Journal of Essential Oil Research 22(1): 78-84. https://doi.org/10.1080/10412905.2010.9700269
  31. Hyldgaard, M., Mygind, T., Meyer, R.L. 2012. Essential oils in food preservation: Mode of action, synergies, and interactions with food matrix components. Frontiers in Microbiology 3(12): 1-24.
  32. Jee, B.Y., Shin, K.W., Lee, D.W., Kim, Y.J., Lee, M.K. 2014. Monitoring of the mortalities and medications in the inland farms of olive flounder, Paralichthys olivaceus, in south korea. Journal of Fish Pathology 27(1): 77-84. https://doi.org/10.7847/jfp.2014.27.1.077
  33. Jeong, M.J., Yang, J., Choi, W.S., Kim, J.W., Kim, S.J., Park, M.J. 2017. Chemical compositions and antioxidant activities of essential oil extracted from Neolitsea aciculata (Blume) Koidz leaves. Journal of the Korean Wood Science and Technology 45(1): 96-106. https://doi.org/10.5658/WOOD.2017.45.1.96
  34. Jung, E.K. 2009. Chemical composition and antimicrobial activity of the essential oil of Chrysanthemum indicum against oral bacteria. Journal of Bacteriology and Virology 39(2): 61-69. https://doi.org/10.4167/jbv.2009.39.2.61
  35. Kim, H.S., Lee, B.S., Yun, K.W. 2013. Comparison of chemical composition and antimicrobial activity of essential oils from three pinus species. Industrial Crops and Products 44: 323-329. https://doi.org/10.1016/j.indcrop.2012.10.026
  36. Kim, S.H., Lee, S.Y., Cho, S.M., Hong, C.Y., Park, M.J., Choi, I.G. 2016. Evaluation on anti-fungal activity and synergy effects of essential oil and their constituents from Abies holophylla. Journal of the Korean Wood Science and Technology 44(1): 113-123. https://doi.org/10.5658/WOOD.2016.44.1.113
  37. Kim, S.M., Jun, L.J., Park, M.A., Jung, S.H., Jeong, H.D., Jeong, J.B. 2015. Monitoring of emaciation disease in cultured olive flounder Paralichthys olivaceus in Jeju (2010-2013), korea. Korean Journal of Fisheries and Aquatic Sciences 48(5): 719-724. https://doi.org/10.5657/KFAS.2015.0719
  38. Knobloch, K., Pauli, A., Iberl, B., Weigand, H., Weis, N. 1989. Antibacterial and antifungal properties of essential oil components. Journal of Essential Oil Research 1(3): 119-128. https://doi.org/10.1080/10412905.1989.9697767
  39. Kotan, R., Kordali, S., Cakir, A. 2007. Screening of antibacterial activities of twenty-one oxygenated monoterpenes. Zeitschrift fur Naturforschung. C, Journal of Biosciences 62(7-8): 507-513.
  40. Koukos, P.K., Papadopoulou, K.I., Patiaka, D.T., Papagiannopoulos, A.D. 2000. Chemical composition of essential oils from needles and twigs of balkan pine (Pinus peuce Grisebach) grown in Northern Greece. Journal of Agricultural and Food Chemistry 48(4): 1266-1268. https://doi.org/10.1021/jf991012a
  41. Lambert, R.J., Skandamis, P.N., Coote, P.J., Nychas, G.J. 2001. A study of the minimum inhibitory concentration and mode of action of oregano essential oil, thymol and carvacrol. Journal of Applied Microbiology 91(3): 453-462. https://doi.org/10.1046/j.1365-2672.2001.01428.x
  42. Lee, J.H., Hong, S.K. 2009. Comparative analysis of chemical compositions and antimicrobial activities of essential oils from Abies holophylla and Abies koreana. Journal of Microbiology and Biotechnology 19(4): 372-377. https://doi.org/10.4014/jmb.0811.630
  43. Lee, S.Y., Kim, S.H., Park, M.J., Lee, S.S., Choi, I.G. 2014. Antibacterial activity of essential oil from Abies holophylla against respiratory tract bacteria. Journal of the Korean Wood Science and Technology 42(5): 533-542. https://doi.org/10.5658/WOOD.2014.42.5.533
  44. Li, W.R., Shi, Q.S., Liang, Q., Xie, X.B., Huang, X.M., Chen, Y.B. 2014. Antibacterial activity and kinetics of Litsea cubeba oil on Escherichia coli. PLoS ONE 9(11): e110983. https://doi.org/10.1371/journal.pone.0110983
  45. Li, Z.H., Cai, M., Liu, Y.S., Sun, P.L., Luo, S.L. 2019. Antibacterial activity and mechanisms of essential oil from Citrus medica L. var. sarcodactylis. Molecules 24(8): 1577-1587. https://doi.org/10.3390/molecules24081577
  46. Lingan, K. 2018. A review on major constituents of various essential oils and its application. Translational Medicine 8(1). DOI: 10.4172/2161-1025.1000201.
  47. Lopez-Romero, J.C., Gonzalez-Rios, H., Borges, A., Simoes, M. 2015. Antibacterial effects and mode of action of selected essential oils components against Escherichia coli and Staphylococcus aureus. Evidence-based Complementary and Alternative Medicine : eCAM 2015: 1-9.
  48. Mann, C.M., Cox, S.D., Markham, J.L. 2000. The outer membrane of Pseudomonas aeruginosa NCTC 6749 contributes to its tolerance to the essential oil of Melaleuca alternifolia (tea tree oil). Letters in Applied Microbiology 30(4): 294-297. https://doi.org/10.1046/j.1472-765x.2000.00712.x
  49. Markestad, A., Grave, K. 1997. Reduction of antibacterial drug use in norwegian fish farming due to vaccination. Developments in Biological Standardization 90: 365-369.
  50. Martucci, J.F., Gende, L., Neira, L., Ruseckaite, R. 2015. Oregano and lavender essential oils as antioxidant and antimicrobial additives of biogenic gelatin films. Industrial Crops and Products 71: 205-213. https://doi.org/10.1016/j.indcrop.2015.03.079
  51. Min, H.J., Kim, C.S., Hyun, H.J., Bae, Y.S. 2017. Essential oil analysis of Illicium anistum L. extracts. Journal of the Korean Wood Science and Technology 45(6): 682-688. https://doi.org/10.5658/WOOD.2017.45.6.682
  52. Mohammed, H., Hamamouchi, J., Zouhdi, M., Bessiere, J.M. 2001. Chemical and antimicrobial properties of essential oils of five moroccan pinaceae. Journal of Essential Oil Research 13(4): 298-302. https://doi.org/10.1080/10412905.2001.9699699
  53. Moon, J.S., Kim, J.Y., Joh, S.J., Kim, M.J., Son, S.W., Jang, H. 2009. Influence on efficacy of ${\beta}$-hemolytic Streptococcus iniae vaccine by mixed infections with Edwardsiella tarda and Neoheterobothrium hirame in cultured olive flounder, Paralichthys olivaceus. Journal of Veterinary Clinics 26(3): 226-230.
  54. Nazzaro, F., Fratianni, F., Coppola, R., Feo, V. 2017. Essential oils and antifungal activity. Pharmaceuticals (Basel) 10(4): 86-106. https://doi.org/10.3390/ph10040086
  55. Nazzaro, F., Fratianni, F., De Martino, L., Coppola, R., De Feo, V. 2013. Effect of essential oils on pathogenic bacteria. Pharmaceuticals (Basel) 6(12): 1451-1474. https://doi.org/10.3390/ph6121451
  56. Nho, S.W., Shin, G.W., Park, S.B., Jang, H.B., Cha, I.S., Ha, M.A., Kim, Y.R., Park, Y.K., Dalvi, R., Kang, B.J., Joh, S.J., Jung, T.S. 2009. Phenotypic characteristics of Streptococcus iniae and Streptococcus parauberis isolated from olive flounder (Paralichthys olivaceus). FEMS Microbiology Letters 293(1): 20-27. https://doi.org/10.1111/j.1574-6968.2009.01491.x
  57. Nikaido, H. 1994. Prevention of drug access to bacterial targets: Permeability barriers and active efflux. Science 264(5157): 382-388. https://doi.org/10.1126/science.8153625
  58. Oh, M.J., Jung, S.J., Kitamura, S.I., Kim, H.Y., Kang, S.Y. 2006. Viral diseases of olive flounder in korean hatcheries. Journal of Ocean University of China 5(1): 45-48. https://doi.org/10.1007/bf02919372
  59. Park, J.W., Wendt, M., Heo, G.J. 2016. Antimicrobial activity of essential oil of Eucalyptus globulus against fish pathogenic bacteria. Laboratory Animal Research 32(2): 87-90. https://doi.org/10.5625/lar.2016.32.2.87
  60. Plesiat, P., Nikaido, H. 1992. Outer membranes of gram-negative bacteria are permeable to steroid probes. Molecular Microbiology 6(10): 1323-1333. https://doi.org/10.1111/j.1365-2958.1992.tb00853.x
  61. Raeisi, M., Tajik, H., Yarahmadi, A., Sanginabadi, S. 2015. Antimicrobial effect of cinnamon essential oil against Escherichia coli and Staphylococcus aureus. Health Scope 4(4): e21808.
  62. Rhodes, G., Huys, G., Swings, J., Mc Gann, P., Hiney, M., Smith, P., Pickup, R. 2000. Distribution of oxytetracycline resistance plasmids between aeromonads in hospital and aquaculture environments: Implication of tn1721 in dissemination of the tetracycline resistance determinant tet A. Applied and Environmental Microbiology 66(9): 3883-3890. https://doi.org/10.1128/AEM.66.9.3883-3890.2000
  63. Rossiter, S., Fletcher, M., Wuest, W. 2017. Natural products as platforms to overcome antibiotic resistance. Chemical Reviews 117(19): 12415-12474. https://doi.org/10.1021/acs.chemrev.7b00283
  64. Salgado-Garciglia, R., Lopez-Meza, J., Torres-Martinez, R., Ochoa-Zarzosa, A., Saavedra-Molina, A., Garcia-Rodriguez, Y., Rios-Chavez, P. 2018. Antioxidant activity of the essential oil and its major terpenes of Satureja macrostema (moc. And sesse ex benth.) briq. Pharmacognosy Magazine 13(4): 875-880.
  65. Sutili, F., Murari, A.L., Silva, L.L., Gressler, L., Heinzmann, B., Vargas, A., Schmidt, D., Baldisserotto, B. 2016. The use of Ocimum americanum essential oil against the pathogens Aeromonas hydrophila and Gyrodactylus sp. in silver catfish (Rhamdia quelen). Letters in Applied Microbiology 63(2): 82-88. https://doi.org/10.1111/lam.12602
  66. Tabanca, N., Kirimer, N., Demirci, B., Demirci, F., Baser, K.H. 2001. Composition and antimicrobial activity of the essential oils of Micromeria cristata subsp. phrygia and the enantiomeric distribution of borneol. Journal of Agricultural and Food Chemistry 49(9): 4300-4303. https://doi.org/10.1021/jf0105034
  67. Tiwari, B.K., Valdramidis, V.P., O'Donnell, C.P., Muthukumarappan, K., Bourke, P., Cullen, P.J. 2009. Application of natural antimicrobials for food preservation. Journal of Agricultural and Food Chemistry 57(14): 5987-6000. https://doi.org/10.1021/jf900668n
  68. Tongnuanchan, P., Benjakul, S. 2014. Essential oils: Extraction, bioactivities, and their uses for food preservation. Journal of Food Science 79(7): 1231-1249.
  69. Tripathi, A., Upadhyay, S., Bhuyan, M., Bhattacharya, P. 2009. A review on prospects of essential oils as biopesticide in insect-pest management. Journal of Pharmacognosy and Phytotherapy 1(5): 052-063.
  70. Trombetta, D., Castelli, F., Sarpietro, M.G., Venuti, V., Cristani, M., Daniele, C., Saija, A., Mazzanti, G., Bisignano, G. 2005. Mechanisms of antibacterial action of three monoterpenes. Antimicrobial Agents and Chemotherapy 49(6): 2474-2478. https://doi.org/10.1128/AAC.49.6.2474-2478.2005
  71. Vaara, M. 1992. Agents that increase the permeability of the outer membrane. Microbiol Reviews 56(3): 395-411. https://doi.org/10.1128/mr.56.3.395-411.1992
  72. Xie, Q., Liu, Z., Li, Z. 2015. Chemical composition and antioxidant activity of essential oil of six pinus taxa native to china. Molecules 20(5): 9380-9392. https://doi.org/10.3390/molecules20059380
  73. Yan, L., Kim, I.H. 2013. Effects of dietary supplementation of fermented garlic powder on growth performance, apparent total tract digestibility, blood characteristics and faecal microbial concentration in weanling pigs. Journal of Animal Physiology and Animal Nutrition 97(3): 457-464. https://doi.org/10.1111/j.1439-0396.2012.01286.x
  74. Yang, J., Choi, W.S., Kim, J.W., Lee, S.S., Park, M.J. 2019. Anti-inflammatory effect of essential oils extracted from wood of four coniferous tree species Journal of the Korean Wood Science and Technology 47(6): 674-691. https://doi.org/10.5658/wood.2019.47.6.674
  75. Yang, X.N., Khan, I., Kang, S.C. 2015. Chemical composition, mechanism of antibacterial action and antioxidant activity of leaf essential oil of Forsythia koreana deciduous shrub. Asian Pacific Journal of Tropical Medicine 8(9): 694-700. https://doi.org/10.1016/j.apjtm.2015.07.031