DOI QR코드

DOI QR Code

Preparation and Characterization of Cellulose Nanocrystals Reinforced Poly (vinyl alcohol) Based Hydrogels for Drug Delivery System

약물 전달 시스템 적용을 위한 셀룰로오스 나노크리스탈(CNCs) 강화 Poly(vinyl alcohol) 기반 하이드로겔의 제조 및 특성

  • CHO, Hyejung (Division of Wood Chemistry, Department of forest Products, National Institute of Forest Science) ;
  • YOO, Won-Jae (Division of Wood Chemistry, Department of forest Products, National Institute of Forest Science) ;
  • AHN, Jinsoo (Division of Wood Chemistry, Department of forest Products, National Institute of Forest Science) ;
  • CHUN, Sang-Jin (Division of Wood Utilization, Department of forest Products, National Institute of Forest Science) ;
  • LEE, Sun-Young (Forest Biomaterials Research Center, National Institute of Forest Science) ;
  • GWON, Jaegyoung (Division of Wood Chemistry, Department of forest Products, National Institute of Forest Science)
  • Received : 2020.03.06
  • Accepted : 2020.05.04
  • Published : 2020.07.25

Abstract

Structural property of most hydrogels is soft, resulting in low mechanical performance that limits their usage in the biomedical applications. For overcoming the drawback, cellulose nanocrystals (CNCs) were adopted in this study. Effects of CNCs on characteristics and drug delivery performance of poly (vinyl alcohol) based hydrogels were explored. FT-IR results showed that the fabricated hydrogels had semi-IPN (semi-interpenetrating polymer network) by formation of acetal and aldehyde bridge. Water absorption and swelling ratio decreased with increasing CNCs content, and the hydrogels with CNCs showed better viscoelastic performance than the without CNCs. Also, CNCs mostly improved the ability of the hydrogel to absorb the drug and the sustainability of the drug release. These results demonstrated that incorporating CNCs into the hydrogel systems can be a good alternative to improve drug delivery performance and mechanical property of the hydrogels.

기존 연질 구조의 하이드로겔은 낮은 기계적 강도로 인하여 생의학 분야에서 응용이 제한된다. 본 연구에서는 이러한 단점을 극복하기 위해서 폴리비닐알코올(PVA: poly(vinyl alcohol))기반 하이드로겔에 셀룰로오스 나노크리스탈(CNCs)을 첨가하여 CNCs가 기계적 특성 및 약물전달 효율에 미치는 영향을 확인하였다. 제조된 하이드로겔은 FT-IR 분석으로 아세탈 및 알데히드 결합으로 가교결합된 망상구조(semi-IPN: semi-interpenetrating polymer network)로 합성된 것이 확인되었다. CNCs 함량이 증가될수록 수분 흡수 및 팽윤도가 감소했으며, 점탄성은 증가하였다. 또한 CNCs의 첨가는 약물 로딩량의 증가와 약물 방출량의 지속성을 향상시켰다. 이러한 결과는 CNCs를 하이드로겔에 첨가하는 것이 하이드로겔의 약물전달 효율성 및 기계적 특성을 개선시키는 좋은 대안이 될 수 있음을 보여주었다.

Keywords

References

  1. An, Q., Beh, C., Xiao, H. 2014. Preparation and characterization of thermo-sensitive poly(vinyl alcohol)-based hydrogel as drug carrier. Journal of Applied Polymer Science 131(1): 39720.
  2. Cho, H., Baek, K., Jeon, J., Park, S., Suh, D., Park, Y. 2013. Removal characteristics of copper by marine macro-algae-derived chars. Chemical Engineering Journal 217: 205-211. https://doi.org/10.1016/j.cej.2012.11.123
  3. Gao, Y., Zhu, W., Liu, J., Di, D., Chang, D., Jiang, T., Wang, S. 2015. A geometric pore adsorption model for predicting the drug loading capacity of insoluble drugs in mesoporous carbon. International Journal of Pharmaceutics 485(1): 25-30. https://doi.org/10.1016/j.ijpharm.2015.02.058
  4. Gwon, J., Cho, H., Chun, S., Lee, S., Wu, Q., Lee, S. 2016. Physiochemical, optical and mechanical properties of poly(lactic acid) nanocomposites filled with toluene diisocyanate grafted cellulose nanocrystals. RSC Advances 6: 9438-9445. https://doi.org/10.1039/c5ra26337a
  5. Gwon, J., Cho, H., Lee, D., Choi, D., Lee, S., Wu, Q., Lee, S. 2018. Physicochemical and mechanical properties of polypropylene-cellulose nanocrystal nanocomposites: Effects of manufacturing process and chemical grafting. BioResources 13(1): 1619-1636.
  6. Gwon, J., Lee, D., Cho, H., Lee, S. 2018. Preparation and characteristics of cellulose acetate based nanocomposites reinforced with cellulose nanocrystals (CNCs). Journal of the Korean Wood Science and Technology 46(5): 565-576. https://doi.org/10.5658/WOOD.2018.46.5.565
  7. Hendrawan, H., Khoerunnisa, F., Sonjaya, Y., Putri, A.D. 2019. Poly (vinyl alcohol)/glutaraldehyde/ Premna oblongifolia Merr extract hydrogel for controlled-release and water absorption application. In IOP Conference Series: Materials Science and Engineering; IOP Publishing: Bristol, UK. 012048.
  8. Hoare, T.R., Kohane, D.S. 2008. Hydrogels in drug delivery: Progress and challenges. Polymer 49(8): 1993-2007. https://doi.org/10.1016/j.polymer.2008.01.027
  9. Hyon, S., Cha, W., Ikada, Y. 1989. Preparation of transparent poly(vinyl alcohol) hydrogel. Polymer Bulletin 22(2): 119-122. https://doi.org/10.1007/BF00255200
  10. Khanjanzadeh, H., Park, B. 2020. Characterization of carboxylated cellulose nanocrystals from recycled fiberboard fibers using ammonium persulfate oxidation. Journal of the Korean Wood Science and Technology 48(2): 231-244. https://doi.org/10.5658/WOOD.2020.48.2.231
  11. Kim, H., Jegal, J., Kim, J., Lee, K., Lee, Y. 2003. Enantioselective permeation of ${\alpha}$-amino acid optical isomers through crosslinked sodium alginate membranes. Journal of Applied Polymer Science 89(11): 3046-3051. https://doi.org/10.1002/app.12453
  12. Ladet, S., David, L., Domard, A. 2008. Multi-membrane hydrogels. Nature Letters 452: 76-79. https://doi.org/10.1038/nature06619
  13. Li, J., Mooney, D.J. 2016. Designing hydrogels for controlled drug delivery. Nature Reviews Materials 1: 16071. https://doi.org/10.1038/natrevmats.2016.71
  14. Lin, C.C., Metters, A.T. 2006. Hydrogels in controlled release formulations: Network design and mathematical modeling. Advanced Drug Delivery Reviews 58(12): 1379-1408. https://doi.org/10.1016/j.addr.2006.09.004
  15. Mansur, H.S., Sadahira, C.M., Souza, A.N., Mansur, A.A. 2008. FTIR spectroscopy characterization of poly (vinyl alcohol) hydrogel with different hydrolysis degree and chemically crosslinked with glutaraldehyde. Materials Science and Engineering C 28: 539-548. https://doi.org/10.1016/j.msec.2007.10.088
  16. Marin, E., Rojas, J. 2015. Preparation and characterization of crosslinked poly (VINYL) alcohol films with waterproof properties. International Journal of Pharmacy and Pharmaceutical Sciences 7(3): 242-248.
  17. Masruchin, N., Park, B.D., Causin, V. 2015. Influence of sonication treatment on supramolecular cellulose microfibril-based hydrogels induced by ionic interaction. Journal of Industrial and Engineering Chemistry 29(25): 265-272. https://doi.org/10.1016/j.jiec.2015.03.034
  18. McKenzie, M., Betts, D., Suh, A., Bui, K., Kim, L.D., Cho, H. 2015. Hydrogel-based drug delivery systems for poorly water-soluble drugs. Molecules 20(11): 20397-20408. https://doi.org/10.3390/molecules201119705
  19. Pal, K., Banthia, A.K., Majumdar D.K. 2007. Preparation and characterization of polyvinyl alcoholgelatin hydrogel membranes for biomedical applications. An Official Journal of the American Association of Pharmaceutical Scientists 8(1): E142-E146.
  20. Reis, E.F.D., Campos, F.S., Lage, A.P., Leite, R.C., Heneine, L.G., Vasconcelos, W.L., Mansur, H.S. 2006. Synthesis and characterization of poly (vinyl alcohol) hydrogels and hybrids for rMPB70 protein adsorption. Materials Research 9(2): 185-191. https://doi.org/10.1590/S1516-14392006000200014
  21. Rivas, C.J.M., Tarhini, M., Badri, W., Miladi, K., Greige-Gerges, H., Nazari, Q. A., Rodriguez, S.A.G., Roman, R.A., Fessi, H., Elaissari, A. 2017. Nanoprecipitation process: From encapsulation to drug delivery. International Journal of Pharmaceutics 532(1): 66-81. https://doi.org/10.1016/j.ijpharm.2017.08.064
  22. Tanpichai, S., Oksman, K. 2016. Cross-linked nanocomposite hydrogels based on cellulose nanocrystals and PVA: Mechanical properties and creep recovery. Composites Part A: Applied Science and Manufacturing 88: 226-233. https://doi.org/10.1016/j.compositesa.2016.06.002
  23. Thangprasert, A., Tansakul, C., Thuaksubun, N., Meesane, J. 2019. Mimicked hybrid hydrogel based on gelatin/PVA for tissue engineering in subchondral bone interface for osteoarthritis surgery. Materials and Design, 183: 108113. https://doi.org/10.1016/j.matdes.2019.108113
  24. Mezger, T. 2015. Applied rheology: With Joe flow on rheology road. Anton Paar.
  25. Tilak, A., Thakur, R.N., Sharma, R., Verma, M., Gupta, A.K. 2016. Study of adsorption of drug and calculation of Freundlich adsorption isotherm. International Journal of Pharmaceutical and Biological Science Archive 4(4): 01-05.
  26. Valle, L.J.D,. Diaz, A., Puiggali, J. 2017. Hydrogels for biomedical applications: cellulose, chitosan, and protein/peptide derivatives. Gels 3(3): 27. https://doi.org/10.3390/gels3030027
  27. Wang, Q., Mynar, J.L., Yoshida, M., Lee, E., Lee, M., Okuro, K., Kinbara, K., Aida. T. 21, January 2010. High-water-content mouldable hydrogels by mixing clay and a dendritic molecular binder. Nature Letters 463: 339-343. https://doi.org/10.1038/nature08693
  28. Xiao, C., Zhou, G. 2003. Synthesis and properties of degradable poly(vinyl alcohol) hydrogel. Polymer Degradation and Stability 81(2): 297-301. https://doi.org/10.1016/S0141-3910(03)00100-9
  29. Yeom, C., Lee, K. 1996. Pervaporation separation of water-acetic acid mixtures through poly (vinyl alcohol) membranes crosslinked with glutaraldehyde. Journal of Membrane Science 109(2): 257-265. https://doi.org/10.1016/0376-7388(95)00196-4
  30. Yue, Y., Han, J., Han, G., French, A.D., Qi, Y., Wu, Q. 2016. Cellulose nanofibers reinforced sodium alginate-polyvinyl alcohol hydrogels: Core-shell structure formation and property characterization. Carbohydrate Polymers 147: 155-164. https://doi.org/10.1016/j.carbpol.2016.04.005
  31. Zaini, L., Febrianto, F., Wistara, I., Marwanto, N., Maulana, M., Lee, S., Kim, N., 2019. Effect of ammonium persulfate concentration on characteristics of cellulose nanocrystals from oil palm frond. Journal of the Korean Wood Science and Technology 47(5): 597-606. https://doi.org/10.5658/wood.2019.47.5.597
  32. Zawko, S.A., Truong, Q., Schmidt, C.E. 2008. Drugbinding hydrogels of hyaluronic acid functionalized with ${\beta}$-cyclodextrin. Journal of Biomedical Materials Research Part A 87(4): 1044-1052. https://doi.org/10.1002/jbm.a.31845
  33. Zhou, Y., Zhang, L., Cheng, Z. 2015. Removal of organic pollutants from aqueous solution using agricultural wastes: A review. Journal of Molecular Liquids 212: 739-762. https://doi.org/10.1016/j.molliq.2015.10.023