DOI QR코드

DOI QR Code

Inorganic Materials and Process for Bioresorbable Electronics

  • Seo, Min-Ho (Center for Bio-Integrated Electronics, Northwestern University) ;
  • Jo, Seongbin (Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign) ;
  • Koo, Jahyun (School of Biomedical Engineering, Korea University)
  • Received : 2020.06.08
  • Accepted : 2020.06.09
  • Published : 2020.06.30

Abstract

This article highlights new opportunities of inorganic semiconductor materials for bio-implantable electronics, as a subset of 'transient' technology defined by an ability to physically dissolve, chemically degrade, or disintegrate in a controlled manner. Concepts of foundational materials for this area of technology with historical background start with the dissolution chemistry and reaction kinetics associated with hydrolysis of nanoscale silicon surface as a function of temperature and pH level. The following section covers biocompatibility of silicon, including related other semiconductor materials. Recent transient demonstrations of components and device levels for bioresorbable implantation enable the future direction of the transient electronics, as temporary implanters and other medical devices that provide important diagnosis and precisely personalized therapies. A final section outlines recent bioresorbable applications for sensing various biophysical parameters, monitoring electrophysiological activities, and delivering therapeutic signals in a programmed manner.

Keywords

References

  1. S.-W. Hwang, H. Tao, D.-H. Kim, H. Cheng, J.-K. Song, E. Rill, M.A. Brenckle, B. Panilaitis, S.M. Won, Y.-S. Kim, Y.M. Song, K.J. Yu, A. Ameen, R. Li, Y. Su, M. Yang, D.L. Kaplan, M.R. Zakin, M.J. Slepian, Y. Huang, F.G. Omenetto, J.A. Rogers. (2012, Sep.). A Physically Transient Form of Silicon Electronics. Science. [Online]. 337(6102), pp. 1640-1644. https://doi.org/10.1126/science.1226325
  2. S.-W. Hwang, G. Park, H. Cheng, J.-K. Song, S.-K. Kang. (2014, Apr.). 25th Anniversary Article: Materials for High-Performance Biodegradable Semiconductor Devices. Adv. Mater. [Online]. 26, pp. 1992-2000. https://doi.org/10.1002/adma.201304821
  3. S.-K. Kang, R. K. J. Murphy, S.-W. Hwang, S. M. Lee, D. V. Harburg. (2016, Feb.). Bioresorbable Silicon Electronic Sensors for the Brain. Nat. [Online]. 530, pp. 71-76. https://doi.org/10.1038/nature16492
  4. K. J. Yu, D. Kuzum, S.-W. Hwang, B. H. Kim, H. Juul. (2016, Jul.). Bioresorbable Silicon Electronics for Transient Spatiotemporal Mapping of Electrical Activity from the Cerebral Cortex. Nat. Mat. [Online]. 15, pp. 782-791. https://doi.org/10.1038/nmat4624
  5. J. A. Rogers, M. G. Lagally & R. G. Nuzzo. (2011, Sep.). Synthesis, assembly and applications of semiconductor nanomembranes. Nat. [Online]. 477(7362), pp. 45-53. https://doi.org/10.1038/nature10381
  6. S.-W. Hwang, G. Park, C. Edwards, E.A. Corbin, S.-K. Kang, H. Cheng, J.-K. Song, J.-H. Kim, S. Yu, J. Ng, J.E. Lee, J. Kim, C. Yee, B. Bhaduri, Y. Su, F.G. Omennetto, Y. Huang, R. Bashir, L. Goddard, G. Popescu, K.-M. Lee. (2014, Mar.). Dissolution Chemistry and Biocompatibility of Single-Crystalline Silicon Nanomembranes and Associated Materials for Transient Electronics. ACS Nano. [Online]. 8(6), pp. 5843-5851. https://doi.org/10.1021/nn500847g
  7. D. Lu, T.-L. Liu, J.-K. Chang, D. Peng, Y. Zhang, J. Shin, T. Hang, W. Bai, Q. Yang, J.A. Rogers. (2019, Sep.). Transient Light-Emitting Diodes Constructed from Semiconductors and Transparent Conductors that Biodegrade Under Physiological Conditions. Adv. Mater. [Online]. 31(42), 1902739. https://doi.org/10.1002/adma.201902739
  8. J. Koo, M.R. MacEwan, S.-K. Kang, S.M. Wong, M. Stephen, P. Gamble, Z. Xie, Y. Yan, Y.-Y. Chen, J. Shin, N. Birenbaum, S. Chung, S.B. Kim, J. Khalifeh, D.V. Harburg, K. Bean, M. Paskett, J. Kim, Z.S. Zhony, S.M. Lee, R. Zhang, K. Luo, B. Ji, A. Banks, H.M. Lee, Y. Huang, W.Z. Ray, J.A. Rogers. (2018, Dec.) Wireless bioresorbable electronic system enables sustained nonpharmacological neuroregenerative therapy. Nature Medicine. [Online]. 24, pp. 1830-1836. https://doi.org/10.1038/s41591-018-0196-2
  9. S.-K. Kang, J. Koo, Y.K. Lee, J.A. Rogers. (2018, Apr.). Advanced Materials and Devices for Bioresorbable Electronics. Acc. Chem. Res. [Online]. 51(5), pp. 988-998. https://doi.org/10.1021/acs.accounts.7b00548
  10. L. Yin, A.B. Farimani, K. Min, N. Vishal, J. Lam, Y.K. Lee, N.R. Aluru, J.A. Rogers. (2015, Jan.). Mechanisms for Hydrolysis of Silicon Nanomembranes as Used in Bioresorbable Electronics. Adv. Mat. [Online]. 27(11), pp. 1857-1864. https://doi.org/10.1002/adma.201404579
  11. S.-W. Hwang, G. Park, C. Edwards, E.A. Corbin, S.-K. Kang. (2014, Mar.). Dissolution Chemistry and Biocompatibility of Single-Crystalline Silicon Nanomembranes and Associated Materials for Transient Electronics. ACS Nano. [Online]. 8(6), pp. 5843-5851. https://doi.org/10.1021/nn500847g
  12. E.D. Palik, V.M. Bermudez, O.J. Glembocki. (1985, Jan.). Ellipsometric Study of the Etch-Stop Mechanism in Heavily Doped Silicon. J. Eletrochem. Soc. [Online]. 132(1), pp.135-141. https://doi.org/10.1149/1.2113747
  13. M. Morita, T. Ohmi, E. Hasegawa, M. Kawakami, M. Ohwada. (1990, Mar.). Growth of native oxide on a silicon surface. J. Appl. Phys. [Online]. 68, pp. 1272-1281. https://doi.org/10.1063/1.347181
  14. S.-K. Kang, G. Park, K. Kim, S.-W. Hwang, H. Cheng, J. Shin, S. Chung, M. Kim, L. Yin, J.C. Lee, K.-M. Lee, J.A. Rogers. (2015, Apr.). Dissolution Chemistry and Biocompatibility of Silicon- and Germanium-Based Semiconductors for Transient Electronics. ACS Appl. Mater. Interfaces. [Online]. 7(17), pp. 9297-9305. https://doi.org/10.1021/acsami.5b02526
  15. S.-K. Kang, S.-W. Hwang, S. Yu, J.-H. Seo, E.A. Corbin, J. Shin, D.S. Wie, R. Bashir, Z. Ma, J.A. Rogers. (2015, Jan.). Biodegradable Thin Metal Foils and Spin-On Glass Materials for Transient Electronics. Adv. Funct. Mater. [Online]. 25(12), pp. 1789-1797. https://doi.org/10.1002/adfm.201403469
  16. L. Yin, H. Cheng, S. Mao, R. Haasch, Y. Liu, X. Xie, S.-W. Hwang, H. Jain, S.-K. Kang, Y. Su, R. Li, Y. Huang, J.A. Rogers. (2013, Sep.). Dissolvable Metals for Transient Electronics. Adv. Funct. Mater. [Online]. 24(5), pp. 645-658. https://doi.org/10.1002/adfm.201301847
  17. E.M. Carlisle. (1982, Jul.). The Nutritional Essentiality of Silicon. Nutr. Rev. [Online]. 40(7), pp. 193-198. https://doi.org/10.1111/j.1753-4887.1982.tb05307.x
  18. J.G. Archibald, H. Fenner. (1957, Jun.). Silicon in Cow's Milk. Int. J. Dairy Sci. [Online]. 40(6), pp. 703-706. https://doi.org/10.3168/jds.S0022-0302(57)94542-3
  19. J.-K. Chang, M.A.B. Emon, C.-S. Li, Q. Yang, H.-P. Chang, Z. Yang, C.-I. Wu, M.T. Saif, J.A. Rogers. (2018, Aug.). Cytotoxicity and in Vitro Degradation Kinetics of Foundry-Compatible Semiconductor Nanomembranes and Electronic Microcomponents. ACS Nano. [Online]. 12(10), pp. 9721-9732. https://doi.org/10.1021/acsnano.8b04513
  20. X. Ji, L. Song, S. Zhong, Y. Jiang, K.G. Lim, C. Wang, R. Zhao. (2018, Jun.). Biodegradable and Flexible Resistive Memory for Transient Electronics. J. Phys. Chem. C. [Online]. 122(29), pp. 16909-16915. https://doi.org/10.1021/acs.jpcc.8b03075
  21. A. Tsukazaki, A. Ohtomo, T. Onuma, M. Ohtani, T. Makino, M. Sumiya, K. Ohtani, S. F. Chichibu, S. Fuke, Y. Segawa, H. Ohno, H. Koinuma, M. Kawasaki. (2004, Dec.). Repeated temperature modulation epitaxy for p-type doping and light-emitting diode based on ZnO. Nat. Mater. [Online]. 4(1), pp. 42-46. https://doi.org/10.1038/nmat1284
  22. A. Tsukazaki, M. Kubota, A. Ohtomo, T. Onuma, K. Ohtani, H. Ohno, S. F. Chichibu, M. Kawasaki. (2005, May). Blue Light-Emitting Diode Based on ZnO. Jpn. J. Appl. Phys. [Online]. 44, L643. https://doi.org/10.1143/JJAP.44.L643
  23. J.-K. Chang, H. Fang, C.A. Bower, E. Song, X. Yu, J.A. Rogers. (2017, Jun.). Materials and processing approaches for foundry-compatible transient electronics. Proc. Natl. Acad. Sci. U.S.A. [Online]. 114(28), pp. E5522-E5529. https://doi.org/10.1073/pnas.1707849114
  24. S. Riches, C. Johnston. (2015, May). Electronics design, assembly and reliability for high temperature applications. 2015 IEEE International Symposium on Circuits and Systems. [Online]. pp. 1158-1161.
  25. M.-A. Paun, F. Udrea. (2016, Feb.). Investigation into the capabilities of Hall cells integrated in a non-fully depleted SOI CMOS technological process. Sens. Actuator A Phys. [Online]. 242, pp. 43-49. https://doi.org/10.1016/j.sna.2016.02.014
  26. L.M. Landsberger, S. Naseh, M. Kahrizi, M. Paranjape. (1996, Jun.). On hillocks generated during anisotropic etching of Si in TMAH. J. Microelectromech. Syst. [Online]. 5, pp. 106-116. https://doi.org/10.1109/84.506198

Cited by

  1. Water-Sintered Transient Nanocomposites Used as Electrical Interconnects for Dissolvable Consumer Electronics vol.13, pp.27, 2021, https://doi.org/10.1021/acsami.1c07102