DOI QR코드

DOI QR Code

Caffeine as a source for nitrogen doped graphene, and its functionalization with silver nanowires in-situ

  • Ramirez-Gonzalez, Daniel (Posgrado Fis. Mat. CU Valles, Universidad de Guadalajara) ;
  • Cruz-Rivera, Jose de J. (Instituto de Metalurgia, Universidad Autonoma de San Luis Potosi) ;
  • Tiznado, Hugo (CNyN Universidad Nacional Autonoma de Mexico) ;
  • Rodriguez, Angel G. (CIACYT-CARIEM, Universidad Autonoma de San Luis Potosi) ;
  • Guillen-Escamilla, Ivan (Departamento de Ciencias Naturales y Exactas, CU Valles, Universidad de Guadalajara) ;
  • Zamudio-Ojeda, Adalberto (Departamento de Fisica, CUCEI, Universidad de Guadalajara)
  • Received : 2018.12.11
  • Accepted : 2020.06.26
  • Published : 2020.07.25

Abstract

In this work, we report the use of caffeine as an alternative source of nitrogen to successfully dope graphene (quaternary 400.6 eV and pyridinic at 398 eV according XPS), as well as the growth of silver nanowires (in-situ) in the surface of nitrogen doped graphene (NG) sheets. We used the improved graphene oxide method (IGO), chemical reduction of graphene oxide (GOx), and impregnation with caffeine as source of nitrogen for doping and subsequently, silver nanowires (NW) grow in the surface by the reduction of silver salts in the presence of NG, achieving a numerous of growth of NW in the graphene sheets. As supporting experimental evidence, the samples were analyzed using conventional characterization techniques: SEM-EDX, XRD, FT-IR, micro RAMAN, TEM, and XPS.

Keywords

Acknowledgement

hanks to: CONACYT for grant. Special thanks to CU-Valles UDG, Dra M. Quintana (C.I.C.S.A.B. U.A.S.L.P.), M.C. C. G. Elías, M.C. R.L. Tovar, M.C. M. Campos y F.J. Rodríguez (I.M. U.A.S.L.P.), A. Mata Munguía (C.U.C.E.I.-U.D.G.), Dr. J.M. Romo Herrera (C.N.Y.N. U.N.A.M.), S. Gallardo, R.Tovar H., E. Ramirez T. and ID-NANO.

References

  1. Audiffred, M., Elias, A.L., Gutierrez, H.R., Lopez-Urias, F., Terrones, H., Merino, G. and Terrones, M. (2013), "Nitrogen-silicon heterodoping of carbon nanotubes", J. Phys. Chem. C, 117(16), 8481-8490. https://doi.org/10.1021/jp312427z
  2. Balandin, A.A., Ghosh, S., Bao, W., Calizo, I., Teweldebrhan, D., Miao, F. and Lau, C.N. (2008), "Superior thermal conductivity of single-layer graphene", Nano Lett., 8, 902-907. https://doi.org/10.1021/nl0731872
  3. Bolotin, K.I., Ghahari, F., Shulman, M.D., Stormer, H.L. and Kim, P. (2009), "Observation of the fractional quantum Hall effect in graphene", Nature, 462(7270), 196-199. https://doi.org/10.1038/nature08582
  4. Castro, A.H., Guinea, F., Peres, N.M.R., Novoselov, K.S. and Geim, A.K. (2009), "The electronic properties of graphene", Rev. Modern Phys., 81(1), 109-162. https://doi.org/10.1103/RevModPhys.81.109
  5. Caswell, K.K., Bender, C.M. and Murphy, C.J. (2003), "Seedless, surfactantless wet chemical synthesis of silver nanowires", Nano Lett., 3(5), 667-669. https://doi.org/10.1021/nl0341178
  6. Filippo, F., Domanov, O., Ayala, P. and Pichler, T. (2017), "Synthesis of Nitrogen Doped Single Walled Carbon Nanotubes with Caffeine", Physica Status Solidi (B) Basic Research, 254(11), 1700364. https://doi.org/10.1002/pssb.201700364
  7. Geim, A.K. and Novoselov, K.S. (2007), "The rise of graphene", Nature Mater., 6(3), 11-19. https://doi.org/10.1142/9789814287005_0002
  8. Geng, D., Yang, S., Zhang, Y., Yang, J., Liu, J., Li, R., Sham, T.K., Sun, X., Ye, S. and Knights, S. (2011), "Nitrogen doping effects on the structure of graphene", Appl. Surf. Sci., 257(21), 9193-9198. https://doi.org/10.1016/j.apsusc.2011.05.131
  9. Ji, D., Wang, Y., Chen, S., Zhang, Y., Li, L., Ding, W. and Wei, Z. (2018), "Nitrogen-doped graphene wrapped around silver nanowires for enhanced catalysis in oxygen reduction reaction", J. Solid State Electrochem., 22(7), 2287-2296. https://doi.org/10.1007/s10008-018-3914-2
  10. Jiang, B., Song, S., Wang, J., Xie, Y., Chu, W., Li, H., Xu, H., Tian, C. and Fu, H. (2014), "Nitrogen-doped graphene supported Pd@ PdO core-shell clusters for CC coupling reactions", Nano Res., 7(9), 1280-1290. https://doi.org/10.1007/s12274-014-0492-1
  11. Jo, G., Sanetuntikul, J. and Shanmugam, S. (2015), "Boron and phosphorous-doped graphene as a metal-free electrocatalyst for the oxygen reduction reaction in alkaline medium", RSC Adv., 5(66), 53637-53643. https://doi.org/10.1039/C5RA06952A
  12. Kane, C.L. and Mele, E.J. (2005), "Quantum spin Hall effect in graphene", Phys. Rev. Lett., 95(22), 22-25. https://doi.org/10.1103/PhysRevLett.95.226801
  13. Kong, L., Bjelkevig, C., Gaddam, S., Zhou, M., Lee, Y.H., Han, G.H., Jeong, H.K., Wu, N., Zhang, Z., Xiao, J., Dowben, P.A. and Kelberg, J.A. (2010), "Graphene/substrate charge transfer characterized by inverse photoelectron spectroscopy", J. Phys. Chem. C, 114(49), 21618-21624. https://doi.org/10.1021/jp108616h
  14. Lazar, P., Karlicky, F., Jurecka, P., Kocman, M., Otyepkova, E., Safarova, K. and Otyepka, M. (2013), "Adsorption of Small Organic Molecules on Graphene", J. Am. Chem. Soc., 135(16), 6372-6377. https://doi.org/10.1021/ja403162r
  15. Leela, A., Reddy, M., Srivastava, A., Gowda, S.R., Gullapalli, H., Debey, M. and Ajayan, P.M. (2010), "Synthesis of nitrogendoped graphene films for lithium battery application", ACS Nano, 4(11), 6337-6342. https://doi.org/10.1021/nn101926g
  16. Li, X., Wang, H., Robinson, J.T. and Sanchez, H. (2009), "Simultaneous nitrogen doping and reduction of graphene oxide", J. Am. Chem. Soc., 131(43), 15939-15944. https://doi.org/10.1021/ja907098f
  17. Li, C.Z., Chueh, C.C., Ding, F., Yip, H.L., Liang, P.W., Li, X. and Jen, A.K.Y. (2013), "Doping of Fullerenes via Anion-Induced Electron Transfer and Its Implication for Surfactant Facilitated High Performance Polymer Solar Cells", Adv. Mater., 25(32), 4425-4430. https://doi.org/10.1002/adma.201300580
  18. Lin, H., Chu, L., Wang, X., Yao, Z., Liu, F., Ai, Y., Zhuang, X. and Han, S. (2016), "Boron, nitrogen, and phosphorous ternary doped graphene aerogel with hierarchically porous structures as highly efficient electrocatalysts for oxygen reduction reaction", New J. Chem., 40(7), 6022-6029. https://doi.org/10.1039/C5NJ03390J
  19. Liu, W., Chung, C.H., Miao, C.Q., Wang, Y.J., Li, B.Y., Ruan, L.Y., Patel, K., Park, Y.J., Woo, J. and Xie, Y.H. (2010), "Chemical vapor deposition of large area few layer graphene on Si catalyzed with nickel films", Thin Solid Films, 518(6), S128-S132. https://doi.org/10.1016/j.tsf.2009.10.070
  20. Long, D., Li, W., Ling, L., Miyawaki, J., Mochida, I. and Yoon, S.H. (2010), "Preparation of nitrogen-doped graphene sheets by a combined chemical and hydrothermal reduction of graphene oxide", Langmuir, 26(20), 16096-16102. https://doi.org/10.1021/la102425a
  21. Luo, Z., Lim, S., Tian, Z., Shang, J., Lai, L., MacDonald, B., Fu, C., Shen, Z., Yu, T. and Lin, J. (2011), "Pyridinic N doped graphene: synthesis, electronic structure, and electrocatalytic property", J. Mater. Chem., 21(22), 8038. https://doi.org/10.1039/C1JM10845J
  22. Lv, R., Li, Q., Botello-Mendez, A.R., Hayashi, T., Wang, B., Berkdemir, A., Hao, Q., Elias, A.L., Cruz-Silva, R., Gutierrez, H.R., Kim, Y. A., Muramatsu, H., Zhu, J., Endo, M., Terrones, H., Charlier, J.-C., Pan, M. and Terrones, M. (2012), "Nitrogendoped graphene: beyond single substitution and enhanced molecular sensing", Scientific Reports, 2, 586. https://doi.org/10.1038/srep00586
  23. Martin, T.P., Heinebrodt, M., Naher, U., Gohlich, H., Lange, T. and Schaber, H. (1992), "Fullerenes doped with metal halides", Int. J. Modern Phys. B, 6(23n24), 3871-3877. https://doi.org/10.1142/s021797929200195x
  24. Marcano, D., Kosynkin, D. and Berlin, J. (2010), "Improved synthesis of graphene oxide", Acs, 4(8), 4806-4814. https://doi.org/10.1021/nn1006368
  25. Nair, A.K., Elizabeth, I., Gopukumar, S., Thomas, S., Kala, M.S. and Kalarikkal, N. (2018), "Nitrogen doped graphene-Silver nanowire hybrids: An excellent anode material for lithium ion batteries", Appl. Surf. Sci., 428, 1119-1129. https://doi.org/10.1016/j.apsusc.2017.09.214
  26. Ning, G., Fan, Z., Wang, G., Gao, J., Qian,W. and Wei, F. (2011), "Gram-scale synthesis of nanomesh graphene with high surface area and its application in supercapacitor electrodes", Chem. Commun., 47(21), 5976. https://doi.org/10.1039/C1CC11159K
  27. Novoselov, K.S., Jiang, Z., Zhang, Y., Morozov, S.V., Stormer, H.L., Zeitler, U., Maan, J.C., Boebinger, G.S., Kim, P. and Geim, A.K. (2007), "Room-temperature quantum Hall effect in graphene", Science, 315(5817), 1379. https://doi.org/10.1126/science.1137201
  28. Pearton, S. (2010), "Doped nanostructures.", Nanoscale, 2(7), 1057. https://doi.org/10.1039/c005273f
  29. Podila, R., Chacon-Torres, J., Spear, J.T., Pichler, T., Ayala, P. and Rao, A.M. (2012), "Spectroscopic investigation of nitrogen doped graphene", Appl. Phys. Lett., 101, 123108. https://doi.org/10.1063/1.4752736
  30. Pop, E., Varshney, V. and Roy, A.K. (2012), "Thermal properties of graphene: Fundamentals and applications", MRS Bulletin, 37(12), 1273-1281. https://doi.org/10.1557/mrs.2012.203
  31. Rao, C.N.R. and Voggu, R. (2010), "Charge-transfer with graphene and nanotubes", Mater. Today, 13(9), 34-40. https://doi.org/10.1016/S1369-7021(10)70163-2
  32. Rao, C.N.R., Biswas, K.S., Subrahmanyam, S. and Govindaraj, A. (2009), "Graphene, the new nanocarbon", J. Mater. Chem., 19(17), 2457. https://doi.org/10.1039/b815239j
  33. Rao, C.N.R., Gopalakrishnan, K. and Govindaraj, A. (2014), "Synthesis, properties and applications of graphene doped with boron, nitrogen and other elements", Nano Today, 9(3), 324-343. https://doi.org/10.1016/j.nantod.2014.04.010
  34. Sadeghi, M.M., Pettes, M.T. and Shi, L. (2012), "Thermal transport in graphene", Solid State Commun., 152(15), 1321-1330. https://doi.org/10.1016/j.ssc.2012.04.022
  35. Schedin, F., Geim, A.K., Morozov, S.V., Hill, E.W., Blake, P., Katsnelson, M.I. and Novoselov, K.S. (2007), "Detection of individual gas molecules adsorbed on graphene", Nature Mater., 6(9), 652-655. https://doi.org/10.1038/nmat1967
  36. Shao, Y., Zhang, S., Engelhard, M.H., Li, G., Shao, G., Wang, Y., Liu, J., Aksay, I.A. and Lin, Y. (2010), "Nitrogen-doped graphene and its electrochemical applications", J. Mater. Chem., 20(35), 7491. https://doi.org/10.1039/C0JM00782J
  37. Sheng, Z.-H., Shao, L., Chen, J.-J., Bao, W.-J., Wang, F.-B. and Xia, X.-H. (2011), "Catalyst-free synthesis of nitrogen-doped graphene via thermal annealing graphite oxide with melamine and its excellent electrocatalysis", ACS Nano, 5(6), 4350-4358. https://doi.org/10.1021/nn103584t
  38. Shin, H.J., Kim, K.K., Benayd, A., Yoon, S.M., Park, H.K., Jung, I.S., Jin, M.H., Jeong, H.K., Kim, J.M., Choi, J.Y. and Lee, Y.H. (2009), "Efficient reduction of graphite oxide by sodium borohydride and its effect on electrical conductance", Adv. Funct. Mater., 19(12), 1987-1992. https://doi.org/10.1002/adfm.200900167
  39. Su, Q., Pang, S., Alijani, V., Li, C., Feng, X. and Mullen, K. (2009), "Composites of graphene with large aromatic molecules", Adv. Mater., 21(31), 3191-3195. https://doi.org/10.1002/adma.200803808
  40. Sun, L., Wang, L., Tian, C., Tan, T., Xie, Y., Shi, K., Li, M. and Fu, H. (2012), "Nitrogen-doped graphene with high nitrogen level via a one-step hydrothermal reaction of graphene oxide with urea for superior capacitive energy storage", RSC Advances, 2, 4498-4506. https://doi.org/10.1039/C2RA01367C
  41. Terrones, M., Filho, A.G. and Rao, A.M. (2008), "Doped Carbon Nanotubes: Synthesis, Characterization and Applications", In: Carbon Nanotubes, pp. 531-566, Springer, Berlin, Heidelberg, Germany. https://doi.org/10.1007/978-3-540-72865-8_17
  42. Tison, Y., Lagoute, J., Repain, V., Chacon, C., Girard, Y., Rousset, S., Joucken, F., Sharma, D., Henrad, L., Amara, H., Ghedjatti, A. and Ducastelle, F. (2015), "Electronic interaction between nitrogen atoms in doped graphene", ACS Nano, 9(1), 670-678. https://doi.org/10.1021/nn506074u
  43. Vinayan, B.P., Sethupathi, K. and Ramaprabhu, S. (2013), "Facile synthesis of triangular shaped palladium nanoparticles decorated nitrogen doped graphene and their catalytic study for renewable energy applications", Int. J. Hydrogen Energy, 38(5), 2240-2250. https://doi.org/10.1016/j.ijhydene.2012.11.091
  44. Wang, X., Li, X., Zhang, L., Yoon, Y., Weber, P.K., Wang, H., Guo, J. and Dai, H. (2009), "N-doping of graphene through electrothermal reactions with ammonia", Science, 324(5928), 768-771. https://doi.org/10.1126/science.1170335
  45. Wang, Y., Shao, Y., Matson, D.W., Li, J. and Lin, Y. (2010), "Nitrogen-doped graphene and its application in electrochemical biosensing", ACS Nano, 4(4), 1790-1798. https://doi.org/10.1021/nn100315s
  46. Wang, H.B., Maiyalagan, T. and Wang, X. (2012), "Review on recent progress in nitrogen-doped graphene: synthesis, characterization, and its potential applications", Acs Catalysis, 2(5), 781-794. https://doi.org/10.1021/cs200652y
  47. Wu, Z.S., Ren, W.C., Gao, L.B., Zhao, J.P., Chen, Z.P., Liu, B.L., Tang, D.M., Yu, B., Jiang, C.B. and Cheng, H.M. (2009), "Synthesis of graphene sheets with high electrical conductivity and good thermal stability by hydrogen arc discharge exfoliation", Acs Nano, 3(2), 411-417. https://doi.org/10.1021/nn900020u
  48. Wu, T., Shen, H., Sun, L., Cheng, B., Liu, B. and Shen, J. (2012), "Nitrogen and boron doped monolayer graphene by chemical vapor deposition using polystyrene, urea and boric acid", New J. Chem., 36, 1385-1391. https://doi.org/10.1039/C2NJ40068E
  49. Zamudio, A., Elias, A.L., Rodriguez-Manzo, J.A., Lopez-Urias, F., Rodriguez-Gattorno, G., Lupo, F., Ruhle, M., Smith, D.J., Terrones, H., Diaz, D. and Terrones, M. (2006), "Efficient anchoring of silver nanoparticles on N-doped carbon nanotubes", Small, 2(3), 346-350. https://doi.org/10.1002/smll.200500348
  50. Zhu, S.E., Yuan, S. and Jenssen, G.C.A.M. (2014), "Optical transmittance of multilayer graphene", EPL, 108(1), 17007. https://doi.org/10.1209/0295-5075/108/17007