DOI QR코드

DOI QR Code

Study on the Thermal Decomposition Characteristics of the Tert-butylperoxymaleate using the DSC

DSC를 이용한 터셔리부틸퍼옥시말레이트의 열분해특성에 관한 연구

  • Lee, Jung-Suk (Occupational Safety and Health Institute, KOSHA) ;
  • Choi, Yi-Rac (Occupational Safety and Health Institute, KOSHA) ;
  • Han, Ou-Sup (Occupational Safety and Health Institute, KOSHA)
  • 이정석 (한국산업안전보건공단 산업안전보건연구원) ;
  • 최이락 (한국산업안전보건공단 산업안전보건연구원) ;
  • 한우섭 (한국산업안전보건공단 산업안전보건연구원)
  • Received : 2020.02.19
  • Accepted : 2020.06.18
  • Published : 2020.06.30

Abstract

Tertbutylperoxymaleate is the one of the organic peroxides used as a raw material of initiator formulations of artificial marble manufacturing. In this study, the thermal decomposition characteristic of TBPM was evaluated using the differential scanning calorimeter in the air and nitrogen circumstance. Regardless of the reaction atmosphere, TBPM showed the exothermic peak due to the drastic decomposition reaction below 130 ℃. The activation energy estimated by dynamic methods had a range of 203~217 kJ/mol and that estimated by model-free analysis method had a range of 118~232 kJ/mol with a thermal conversion. And the ADT24, the temperature that lead to the maximum heating rate within 24 hours, was evaluated as (80~95) ℃ using the estimated activation energy.

텨셔리부틸퍼옥시말레이트(Tertbutylperoxymaleate : TBPM)는 인조대리석 제조에 사용되는 개시제 조성물의 원료로 유기과산화물의 일종이다. 본 연구에서는 시차주사열량계(DSC)를 이용하여 공기 및 질소 분위기에서 TBPM의 열분해특성을 평가하였다. TBPM은 반응 분위기와 관계없이 130 ℃ 이하에서 급격한 분해에 의한 발열을 나타냈다. 그리고 동적방법을 이용한 속도론적 평가에서 방법에 따라서 203~217 kJ/mol의 활성화에너지를 보였으며, Model-free 방법에 의한 분석에서는 118~232 kJ/mol의 활성화에너지를 갖는 것으로 평가되었다. 그리고 도출된 활성화에너지를 이용하여 24시간 이내에 최대발열속도에 도달하는 온도인 ADT24는 (80~95) ℃로 평가되었다.

Keywords

References

  1. 일본소방연구회, "유기과산화물의 화재폭발사고 사례와 이상발생후의 경과분석", 소방연구보고서-II, 106, (2009)
  2. Jung, D. K., Choi, J. W. and Choi, I. G., "A Study on the Explosion Pressure Behavior of Methyl Ethyl Ketone Peroxide with Addition of Sulfuric Acid", KIGAS, 8(4), 50-54, (2004)
  3. Kim, K. E., "Thermal Decomposition Characteristics of Organic Peroxides", KOSHA, (2001)
  4. T. M. Tseng, T. T. Chang, T. S. Su, C. M. Shu, "Study of thermal decomposition of methyl ethyl ketone peroxide using DSC and simulation", Jol. Hazardous Materials, 142(3), 765-770, (2007) https://doi.org/10.1016/j.jhazmat.2006.06.103
  5. Han, O. S., Han, I. S., Choi, Y. R. and Lee, K. W., "Explosion Properties and Thermal Stability of Reactive Organic Dust", KIGAS, 15(4), 7-14, (2011)
  6. S. Fischer, G. Krahn, B. Reimer, "Evaluation of microcalorimetric measurements in terms of information content for decomposition reactions", Thermochimica Acta, 445, 160-167, (2006) https://doi.org/10.1016/j.tca.2005.10.002
  7. KS A ISO 13220, "Particle size analysis Laser diffraction methods - Part 1 General principles", (2014)
  8. ASTM E 537-12, "Standard Test Method for The Thermal Stability of Chemicals by Differential Scanning Calorimetry", (2012)
  9. T. Ozawa, "Estimation of activation energy by isoconversion methods", Thermochimica Acta, 203, 159-165, (1992) https://doi.org/10.1016/0040-6031(92)85192-X
  10. Roger L. Blaine, Homer E. Kissinger, "Homer Kissinger and the Kissinger equation", Thermochimica Acta, 540, 1-6, (2012) https://doi.org/10.1016/j.tca.2012.04.008
  11. ASTM E 698-01, "Standard Test Method for Arrhenius Kinetic Constants for Thermally Unstable Materials", (2001)
  12. METTLER TOLEDO, "STARe Software Option Advanced Model Free Kinetics"
  13. F. Stoessel, "Thermal Safety of chemical processes- Risk Assessment and Process Design", WILEY-VCH, 54-7, (2008)