DOI QR코드

DOI QR Code

A comparative study of ultra-trace-level uranium by thermal ionization mass spectrometry with continuous heating: Static and peak-jumping modes

  • Lee, Chi-Gyu (Safeguards Samples Analysis Team, Korea Atomic Energy Research Institute) ;
  • Park, Ranhee (Safeguards Samples Analysis Team, Korea Atomic Energy Research Institute) ;
  • Park, Jinkyu (Safeguards Samples Analysis Team, Korea Atomic Energy Research Institute) ;
  • Lim, Sang Ho (Safeguards Samples Analysis Team, Korea Atomic Energy Research Institute)
  • Received : 2018.12.15
  • Accepted : 2019.12.21
  • Published : 2020.07.25

Abstract

For ensuring nuclear safeguards, we report the analytical signal-detection performance of thermal ionization mass spectrometry (TIMS) with continuous heating for the measurement of isotopic ratios in samples containing ultra-trace amounts of uranium. As methods for detecting uranium signals, peak-jumping mode using a single detector and static mode using multiple detectors were examined with U100 (10% 235U-enriched) uranium standard samples in the femtogram-to-picogram range. Uranium isotope ratios, n(235U)/n(238U), were measured down to levels of 1 fg and 3 fg in static and peak-jumping modes, respectively, while n(234U)/n(238U) and n(236U)/n(238U) values were measured down to levels of 100 fg in both modes. In addition, the dependency of the 238U signal intensity on sample quantity exhibited similar tendencies in both modes. The precisions of the isotope ratios obtained in the static mode over all sample ranges used in this study were overall slightly higher than those obtained in peak-jumping mode. These results indicate that isotope ratio measurements by TIMS with continuous heating are almost independent of the detection method, i.e., peak-jumping mode or static mode, which is characteristic of isotope-ratio measurements using the TIMS method with continuous heating. TIMS with continuous heating is advantageous as it exhibits the properties of multiple detectors within a single detector, and is expected to be used in various fields in addition to ensuring nuclear safeguards.

Keywords

References

  1. D.L. Donohue, Strengthening IAEA safeguards through environmental sampling and analysis, J. Alloy. Comp. 271-273 (1998) 11-18. https://doi.org/10.1016/S0925-8388(98)00015-2
  2. D.L. Donohue, Highly sensitive and selective analytical measurements of trace nuclear materials ensure that secret nuclear activities, Anal. Chem. 74 (2002) 28A-35A. https://doi.org/10.1021/ac021909y
  3. J.N. Cooley, E. Kuhn, D.L. Donohue, Current status of environmental sampling for IAEA safeguards, Proc. 19th Annu. ESARDA Symp. Safeguards Nucl. Mater. Manag. Montpellier, France (May 13-15, 1997) 31-35.
  4. S. Usuda, K. Yasuda, Y. Saito-Kokubu, K.T. Esaka, K. Chi-Gyu Lee, Masaaki Magara, Satoshi Sakurai, Y. Miyamoto, J.Y. Chai, et al., Challenge to ultra-trace analytical techniques of nuclear materials in environmental samples for safeguards at JAERI: methodologies for physical and chemical form estimation, Int. J. Environ. Anal. Chem. 86 (2006) 663-675. https://doi.org/10.1080/03067310600583733
  5. Y. Aregbe, K. Mayer, M. Herdberg, S. Richter, J. Poths, T. Prohaska, R. Kips, Report on the workshop on measurements of minor isotopes in uranium, ESARDA Bull. 40 (2008) 59-69.
  6. J.M. Kelly, L.A. Bond, T.M. Beasley, Global distribution of Pu isotopes and $^{237}Np$, Sci. Total Environ. 237/238 (1999) 483-500. https://doi.org/10.1016/S0048-9697(99)00160-6
  7. S. Burger, L.R. Riciputi, D. Bostic, S. Turgeon, E.H. McBay, M. Lavelle, Isotope ratio analysis of actinides, fission products, and geolocators by high-efficiency multi-collector thermal ionization mass spectrometry, Int. J. Mass Spectr. 286 (2) (2009) 70-82. https://doi.org/10.1016/j.ijms.2009.06.010
  8. S. Goldberg, S. Richter, R. Essex, P. Marson, J. Schieters, Improved Environmental and Forensics Measurements Using Multiple Ion Counters in Isotope Ratio Mass Spectrometry, IAEA-CN-98/3/07.
  9. S. Richter, A. Alonso, J. Truyens, H. Kühn, A. Verbruggen, R. Wellum, Evaluating the status of uranium isotope ratio measurements using an inter-laboratory comparison campaign, Int. J. Mass Spectr. 264 (2007) 184-190. https://doi.org/10.1016/j.ijms.2007.04.013
  10. S. Richter, S. Goldberg, Improved techniques for high accuracy isotope ratio measurements of nuclear materials using thermal ionization mass spectrometry, Int. J. Mass Spectr. 229 (2003) 181-197. https://doi.org/10.1016/S1387-3806(03)00338-5
  11. J.B. Schwieters, C. Bouman, D. Tuttas, M.E. Wieser, A new tool for in situ isotopic analysis of small samples: multiple Ion Counting-ICPMS and -TIMS, Geochem. Cosmochim. Acta 68 (2004) A60.
  12. M.E. Wieser, J.B. Schwieters, The development of multiple collector mass spectrometry for isotope ratio measurements, Int. J. Mass Spectr. 242 (2005) 97-115. https://doi.org/10.1016/j.ijms.2004.11.029
  13. K.J. Mathew, G. O'Connor, A. Hasozbek, M. Kraiem, Total evaporation method for uranium isotope-amount ratio measurements, J. Anal. At. Spectrom. 28 (2013) 866-876. https://doi.org/10.1039/c2ja30321c
  14. E.L. Callis, R.M. Aberathy, High-precision isotopic analyses of uranium and plutonium by total sample volatilization and signal integration, Int. J. Mass Spectr. 103 (1991) 93-105. https://doi.org/10.1016/0168-1176(91)80081-W
  15. R. Fielder, Total evaporation measurements: experience with multi-collector instruments and a thermal ionization quadrupole mass spectrometer, Int. J. Mass Spectr. 146-147 (1995) 91-97. https://doi.org/10.1016/0168-1176(95)04197-S
  16. S. Richter, H. Kuhn, Y. Aregbe, M. Hedberg, J. Horta-Domenech, K. Mayer, E. Zuleger, S. Burger, S. Boulyga, A. Kopf, J. Poths, K.J. Mathew, Improvements in routine uranium isotope ratio measurements using the modified total evaporation method for multi-collector thermal ionization mass spectrometry, J. Anal. At. Spectrom. 26 (2011) 550-564. https://doi.org/10.1039/C0JA00173B
  17. D. Suzuki, Y. Saito-Kokubu, S. Sakurai, C.G. Lee, M. Magara, K. Iguchi, T. Kimura, A new method for isotope ratio measurement of uranium in trace amount by thermal ionization mass spectrometry: the continuous heating method, Int. J. Mass Spectr. 294 (2010) 23-27. https://doi.org/10.1016/j.ijms.2010.04.007
  18. C.G. Lee, D. Suzuki, Y. Saito-kokubu, F. Esaka, M. Magara, T. Kimura, Simultaneous determination of plutonium and uranium isotope ratios in individual plutonium-uranium mixed particles by thermal ionization mass spectrometry, Int. J. Mass Spectr. 314 (2012) 57-62. https://doi.org/10.1016/j.ijms.2012.02.006
  19. C.G. Lee, D. Suzuki, F. Esaka, M. Magara, K. Song, Ultra-trace analysis of plutonium by thermal ionization mass spectrometry with a continuous heating technique without chemical separation, Talanta 141 (2015) 92-96. https://doi.org/10.1016/j.talanta.2015.03.060

Cited by

  1. Reactor fuel characterization: Evaluation of multiple techniques for expedited analysis of 235U/238U isotopic ratios in U-10Mo vol.472, 2022, https://doi.org/10.1016/j.ijms.2021.116777