DOI QR코드

DOI QR Code

ON THE EXISTENCE OF MDS SELF-DUAL CODES OVER FINITE CHAIN RINGS

  • 투고 : 2020.04.05
  • 심사 : 2020.04.18
  • 발행 : 2020.05.15

초록

We studied the MDS self-dual codes over finite chain rings. We stated the projection and lifting of codes over the finite chain rings with respect to the MDS self-dual codes, and then we applied the results to the MDS self-dual codes over Galois rings.

키워드

참고문헌

  1. W. Bosma, J. Cannon, and C. Playoust, The Magma algebra system I: The user language, J. Symbolic Comput., 24 (1997), 235-265. https://doi.org/10.1006/jsco.1996.0125
  2. S.T. Dougherty, J.-L. Kim, and H. Kulosman, MDS codes over finite principal ideal rings, Designs, Codes and Cryptography, 50 (2009), 77-92. https://doi.org/10.1007/s10623-008-9215-5
  3. S.T. Dougherty, J.-L. Kim, H. Kulosman, and H. Liu, Self-dual codes over com- mutative Frobenius rings, Finte Fields and Their Applications, 16 (2010), 14-26. https://doi.org/10.1016/j.ffa.2009.11.004
  4. S.T. Dougherty, H. Liu, and Y.H. Park, Lifted codes over finite chain rings, Math. J. Okayama Univ., 53 (2011), 39-53.
  5. S.T. Dougherty and K. Shiromoto, MDR Codes over $Z_k$, IEEE-IT, 46 (2000) 265-269. https://doi.org/10.1109/18.817524
  6. X. Fang, K. Lebed, H. Liu, and J. Luo, New MDS Self-dual Codes over Finite Fields of Odd Characteristic, https://arxiv.org/pdf/1811.02802v9.pdf
  7. M. Grassl and T.A. Gulliver, On self-dual MDS codes, In: Proceedings of ISIT, (2008) 1954-1957.
  8. S. Han, MDS Self-Dual Codes and Antiorthogonal Matrices over Galois Rings, MDPI Information, 10 153 (2019), 1-12.
  9. J.-L. Kim and Y. Lee, Construction of MDS Self-dual codes over Galois rings, Des. Codes Cryptogr., 45 (2007), 247-258 . https://doi.org/10.1007/s10623-007-9117-y
  10. H. Lee and Y. Lee, Construction of self-dual codes over finite rings $Z_{p^m}$, Journal of Combinatorial Theory, Series A, 115 (2008), 407-422. https://doi.org/10.1016/j.jcta.2007.07.001
  11. F.J. MacWilliams and N.J.A. Sloane, The Theory of Error-Correcting Codes, Amsterdam, The Netherlands: North-Holland, 1977.
  12. G.H. Norton and A. Salagean, On the Hamming distance of linear codes over a finite chain ring, IEEE Trans. Inform. Theory, 46 (2000), 1060-1067. https://doi.org/10.1109/18.841186
  13. E. Rains and N.J.A. Sloane, Self-dual codes, In: Pless, V.S.; Huffman, W.C. (eds.) Handbook of Coding Theory. Elsevier, Amsterdam, 1998.
  14. Z.-X. Wan, Finite Fields and Galois Rings, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2012.
  15. J. Wood, Duality for modules over finite rings and applications to coding theory, Amer. J. Math., 121 (1999), 555-575. https://doi.org/10.1353/ajm.1999.0024