DOI QR코드

DOI QR Code

Synthesis and Characterization of Poly(L-lactide)-Poly(ε-caprolactone) Segmented Block Copolymers

Poly(L-lactide)-Poly(ε-caprolactone) 세그먼트화 블록 공중합체의 합성과 특성분석

  • Lee, Il Jae (Department of Advanced Organic Materials and Textile System Engineering, Chungnam National University) ;
  • Hong, Choong Hee (Department of Advanced Organic Materials and Textile System Engineering, Chungnam National University) ;
  • Eom, Dae Gil (Department of Advanced Organic Materials and Textile System Engineering, Chungnam National University) ;
  • Baik, Doo Hyun (Department of Advanced Organic Materials and Textile System Engineering, Chungnam National University)
  • 이일재 (충남대학교 유기소재.섬유시스템 공학과) ;
  • 홍충희 (충남대학교 유기소재.섬유시스템 공학과) ;
  • 엄대길 (충남대학교 유기소재.섬유시스템 공학과) ;
  • 백두현 (충남대학교 유기소재.섬유시스템 공학과)
  • Received : 2020.04.22
  • Accepted : 2020.06.13
  • Published : 2020.06.30

Abstract

In this study, a series of poly(L-lactide) (PLA)-poly(ε-caprolactone) (PCL) segmented block copolymers were synthesized through three-step polymerization procedures. The first step of the synthesis involved the ring-opening polymerization of ε-caprolactone, initiated by poly(tetramethylene ether glycol), which resulted in the production of HO-PCL-OH (PCL-diol). The synthesized PCL-diol acted as an initiator of the second-step product, i.e., PLA-PCL-PLA ABA-type tri-block copolymers. Finally, the PLA-PCL segmented block copolymer was prepared by reacting PLA-PCL-PLA with hexamethylene diisocyanate, a chain extender. The PLA-PCL segmented block copolymers were characterized through nuclear magnetic resonance spectroscopy, Fourier-transform infrared spectroscopy, gel permeation chromatography, differential scanning calorimetry, and universal testing machine tests. The PLA-PCL segmented block copolymer showed a lower modulus and a higher elongation at break than the PLA homopolymer without significant meltingpoint depression.

Keywords

Acknowledgement

본 연구는 충남대학교 학술연구비에 의해 지원되었으며, 당 기관의 연구비 지원에 감사드립니다.

References

  1. S. H. Kim and S. H. Kim, "Biofunctional Biodegradable Polymers", Polym. Sci. Tech., 2007, 18, 450-457.
  2. C. Y. Park, Y. H. Choi, and W. K. Lee, "Study on Degradation Rates of Biodegradable Polymer by Stereochemistry", J. Environ. Sci., 2009, 18, 797-802. https://doi.org/10.3321/j.issn:1001-0742.2006.04.030
  3. L. S. Nair and C. T. Laurencin, "Biodegradable Polymers as Biomaterials", Prog. Polym. Sci., 2007, 32, 762-798. https://doi.org/10.1016/j.progpolymsci.2007.05.017
  4. A. C. Albertsson and I. K. Varma, “Recent Developments in Ring Opening Polymerization of Lactones for Biomedical Application”, Biomacromolecules, 2003, 4, 1466-1486. https://doi.org/10.1021/bm034247a
  5. A. R. Horst, L. C. Robert, G. E. Suzanne, and G. M. Antonios, “Degradation of Polydispersed Poly(L-lactic acid) to Modulate Lactic Acid Release”, Biomaterials, 1995, 16, 441-447. https://doi.org/10.1016/0142-9612(95)98816-W
  6. Y. S. You, K. H. So, and M. S. Chung, "Trend in Development and Marketing of Degradable Plastics", Korean J. Food Sci. Technol., 2008, 40, 365-374.
  7. W. F. A. Den Dunnen, B. van der Lei, P. H. Robinson, A. Holwerda, A. J. Pennings, and J. M. Schakenraad, "Biological Performance of a Degradable Poly(lactic acid-co-${\varepsilon}$-caprolactone) Nerve Guide", J. Biomed. Mater. Res., 1995, 29, 757-766. https://doi.org/10.1002/jbm.820290612
  8. J. Fernandez, A. Etxeberria, and J. R. Sarasua, "Synthesis Structure and Properties of Poly(L-lactide-co-${\varepsilon}$-caprolactone) Statistical Copolymers", J. Mech. Behav. Biomed. Mater., 2012, 9, 100-112. https://doi.org/10.1016/j.jmbbm.2012.01.003
  9. I. Navarro-Baena, V. Sessini, F. Dominici, L. Torre, J. M. Kenny, and L. Peponi, "Design of Biodegradable Blends Based on PLA and PCL: From Morphological, Thermal and Mechanical Studies to Shape Memory Behavior", Polym. Degrad. Stab., 2016, 132, 97-108. https://doi.org/10.1016/j.polymdegradstab.2016.03.037
  10. I. Navarro-Baena, A. Marcos-Fernandez, A. Fernandez-Torres, J. M. Kenny, and L. Peponi, "Synthesis of PLLA-b-PCL-b-PLLA Linear Tri-block Copolymers and Their Corresponding Poly(ester-urethane)s: Effect of the Molecular Weight on Their Crystallisation and Mechanical Properties", RSC Adv., 2014, 4, 8510-8524. https://doi.org/10.1039/c3ra44786c
  11. B. Eling, S. Gogolewski, and A. J. Pennings, "Biodegradable Materials of Poly(l-lactic acid): 1. Melt-spun and Solution-spun Fibres", Polymer, 1982, 23, 1587-1593. https://doi.org/10.1016/0032-3861(82)90176-8
  12. H. R. Kricheldorf and T. Mang, "Polylactone. 1. Copolymerization of Glycolide and ${\varepsilon}$-caprolactone.", Macromolecules, 1984, 17, 2173-2181. https://doi.org/10.1021/ma00140a051
  13. J. Kasperczyk, "Copolymerization of Glycolide and ${\varepsilon}$-caprolactone, 1 Analysis of the Copolymer Microstructure by Mean of $^{1}H$ and $^{13}C$ NMR Spectroscopy", Macromol. Chem. Phys., 1999, 20, 903-910. https://doi.org/10.1002/(SICI)1521-3935(19990401)200:4<903::AID-MACP903>3.0.CO;2-6
  14. A. P. P. Van Dijk, J. A. M. Smit, F. E. Kohn, and J. Feijen, "Characterization of Poly(D,L-lactic acid) by Gel Permeation Chromatography", J. Polym. Sci. A Polym. Chem., 1983, 21, 197-208.
  15. Y. Baimark and R. Molly, "Synthesis and Characterization of Poly(L-lactide-co-${\varepsilon}$-caprolactone) Copolymers : Effect of Stannous Octoate Initiator and Diethylene Glycol Coinitiator Concentrations", Science Asia, 2004, 30, 327-334. https://doi.org/10.2306/scienceasia1513-1874.2004.30.327
  16. Y. Baimark and R. Molly, "Synthesis and Charaterization of Poly(L-lactide-co-${\varepsilon}$-caprolactone) (B)-poly(L-lactide) (A) ABA Block Copolymers", Polym. Adv. Technol., 2005, 16, 332-337. https://doi.org/10.1002/pat.588
  17. J. M. Lee, S. H. Kim, H. Y. Jeong, N. R. Ahn, H. G. Roh, J. W. Cho, B. C. Chun, S. T. Oh, and J. S. Park, "Preparation and Characterization of Polyurethane Foam Using a PLA/PEG Polyol Mixture", Fiber. Polym., 2014, 15, 1349-1356. https://doi.org/10.1007/s12221-014-1349-7