DOI QR코드

DOI QR Code

식생유니트형 LID 시스템의 우수유출 지연효과에 대한 SWMM 전산모의와 인공강우 모니터링 간의 유의성 분석

Analysis of Significance between SWMM Computer Simulation and Artificial Rainfall on Rainfall Runoff Delay Effects of Vegetation Unit-type LID System

  • 김태한 (상명대학교 환경조경학과) ;
  • 최부헌 (상명대학교 대학원 환경자원학과)
  • Kim, Tae-Han (Dept. of Environmental Landscape Architecture, Sangmyung University) ;
  • Choi, Boo-Hun (Dept. of Environmental Landscape Architecture, Graduate School, Sangmyung University)
  • 투고 : 2020.05.06
  • 심사 : 2020.06.24
  • 발행 : 2020.06.30

초록

본 연구는 식생기반 LID 시스템 모델을 기반으로 생태적 구성요소의 성능 분석 방향을 제시하기 위해, SWMM 전산모의와 강우·유출 모의장치를 이용하여 모니터링 결과 간의 통계적 유의성을 분석하고, 시스템 사전설계에 요구되는 기초자료를 제공하고자 한다. 또한, 선행연구에서 상대적으로 논의가 부족했던 식생기반 LID 시스템의 토양, 식생 모델 및 분석 방안을 종합하고, 장치형 LID 시스템을 대체할 수 있는 성능 정량화 방향을 제시하려 한다. 인공강우재현 모니터링 40분 경과 후 실험구와 대조구 모두 최대강우강도인 142.91mm/hr(n=3, sd=0.34), 142.24mm/hr(n=3, sd=0.90)로 집계되었다. 우량주상도 대비 10분, 50분 구간은 낮은 강우강도가 재현되었으며, 20분, 30분, 40분 구간은 높은 강우강도가 확인되었다. 우수유출 지연효과의 경우, 실험구의 유출강도 저감량은 대조구의 최대유출강도가 발생된 50분에 0.46mm/min을 기록하여, 79.8% 저감된 것으로 분석되었다. 전산모의의 경우, 실험구의 유출강도 저감량은 대조구의 최대유출강도가 발생된 50분에 0.05mm/min을 기록하여, 99.1% 저감된 것으로 모의되었다. 최대 강우유출강도의 경우, 실험구(Dv=30.35, NSE=0.36)는 인공강우 모니터링과 SWMM 전산모의가 동일하게 70분에 각각 0.77mm/min, 1.06mm/min을 기록하였다. 대조구(Dv=17.27, NSE=0.78)도 동일하게 50분에 각각 2.26mm/min, 2.38mm/min으로 집계되었다. 상기 연구결과를 통해 강우·유출 모의장치와 SWMM 전산모의 간의 통계적 유의성을 통해 단일 식생이 적용된 LID 시스템의 우수유출저감 성능의 사전설계 방향을 제시할 수 있었다. 또한, LID 시스템의 토양, 식생 모델 및 분석방법을 종합하여, 사전설계와 연계 가능한 식생 및 토양 부문의 매개변수 정량화 방안이 정리되었다. 다만, 단일 식생기반 LID 시스템으로 유형과 물리적 변수가 제한되었고, 모니터링, 전산모의 결과 간의 통계적 유의성 보정에 요구되는 알고리즘 연구가 후속되어야 할 것으로 판단된다.

In order to suggest performance analysis directions of ecological components based on a vegetation-based LID system model, this study seeks to analyze the statistical significance between monitoring results by using SWMM computer simulation and rainfall and run-off simulation devices and provide basic data required for a preliminary system design. Also, the study aims to comprehensively review a vegetation-based LID system's soil, a vegetation model, and analysis plans, which were less addressed in previous studies, and suggest a performance quantification direction that could act as a substitute device-type LID system. After monitoring artificial rainfall for 40 minutes, the test group zone and the control group zone recorded maximum rainfall intensity of 142.91mm/hr. (n=3, sd=0.34) and 142.24mm/hr. (n=3, sd=0.90), respectively. Compared to a hyetograph, low rainfall intensity was re-produced in 10-minute and 50-minute sections, and high rainfall intensity was confirmed in 20-minute, 30-minute, and 40-minute sections. As for rainwater run-off delay effects, run-off intensity in the test group zone was reduced by 79.8% as it recorded 0.46mm/min at the 50-minute point when the run-off intensity was highest in the control group zone. In the case of computer simulation, run-off intensity in the test group zone was reduced by 99.1% as it recorded 0.05mm/min at the 50-minute point when the run-off intensity was highest. The maximum rainfall run-off intensity in the test group zone (Dv=30.35, NSE=0.36) recorded 0.77mm/min and 1.06mm/min in artificial rainfall monitoring and SWMM computer simulation, respectively, at the 70-minute point in both cases. Likewise, the control group zone (Dv=17.27, NSE=0.78) recorded 2.26mm/min and 2.38mm/min, respectively, at the 50-minutes point. Through statistical assessing the significance between the rainfall & run-off simulating systems and the SWMM computer simulations, this study was able to suggest a preliminary design direction for the rainwater run-off reduction performance of the LID system applied with single vegetation. Also, by comprehensively examining the LID system's soil and vegetation models, and analysis methods, this study was able to compile parameter quantification plans for vegetation and soil sectors that can be aligned with a preliminary design. However, physical variables were caused by the use of a single vegetation-based LID system, and follow-up studies are required on algorithms for calibrating the statistical significance between monitoring and computer simulation results.

키워드

참고문헌

  1. Cipolla, S. S., M. Maglionico and I. Stojkov(2016) A long-term hydrological modelling of an extensive green roof by means of SWMM. Ecological Engineering 95: 876-887. https://doi.org/10.1016/j.ecoleng.2016.07.009
  2. EPA(2015) Storm Water Management Model Reference Manual, Volume I - Hydrology.
  3. Erdal, K., D. Ahmet and A. Hayrullah(2018) Rainfall simulator for investigating sports field drainage processes. Measurement 125: 360-370. https://doi.org/10.1016/j.measurement.2018.05.001
  4. Hoghooghi, N., H. Golden, B. Bledsoe, B. Barnhart, A. Brookes, K. Djang, J. Halama, B. Mckane, C. Nietch, and P. Pettus(2018) Cumulative effects of low impact development on watershed hydrology in a mixed land-cover system, Water 10(8): 991. https://doi.org/10.3390/w10080991
  5. Jang, Y. S., M. E. Kim, J. S. Beak and H. S. Shin(2014) The study on development and verification of rainfall-runoff simulator for LID technology verification. Journal of Korea Water Resources Association 47(6): 513-522. https://doi.org/10.3741/JKWRA.2014.47.6.513
  6. Jonckheere, I., S. Fleck, K. Nackaerts, B. Muysa, P. Coppin, M. Weiss and F. Baret(2004) Review of methods for in situ leaf area index determination. Part I. Theories, sensors and hemispherical photography. Agricultural and Forest Meteorology 121: 19-35. https://doi.org/10.1016/j.agrformet.2003.08.027
  7. Jung, J. S., K. W. Jung, S. M. Kang and K.H. Hyun(2018) Evaluation of water cycle improvement in LH institute using SWMM-LID model. Journal of Korean Society on Water Environment 34(3): 308-315. https://doi.org/10.15681/KSWE.2018.34.3.308
  8. Kim, J. H. and J. G. Joo(2017) A study on the performance comparison of the low impact development facilities for long-term stormwater reduction. The Magazine of the Korean Society of Hazard Mitigation, 7(.5): 337-344.
  9. Kim, M. E., Y. S. Jang, C. H. Nam and H. S. Shin(2015) A study on the effectiveness verification of hydrological cycle of pervious pavement using LID simulator. Journal of Korea Water Resources Association 48(5): 321-330. https://doi.org/10.3741/JKWRA.2015.48.5.321
  10. Kim, T. H. and J. W. Lee(2016) Computer simulation study to generate an optimal hydrologic model based on the soil properties of the large area plate roof greenery system. KIEAE Journal, 16(1): 73-79. https://doi.org/10.12813/kieae.2016.16.1.073
  11. Kim, T. H., and J. H. Choi(2017) A study on the peak runoff reduction effect of Seolleung.Jeongneung zone by applying LID(Low Impact Development) system based on the landscape architectural technology. Journal of the Korean Institute of Traditional Landscape Architecture 35(4): 126-133. https://doi.org/10.14700/KITLA.2017.35.4.126
  12. Kim, T. H., J. H. Park, and B. H. Choi(2019) Analysis of rainfall runoff delay effect of vegetation unit-type LID system through rainfall simulator-based probable rainfall recreation. Journal of the Korea Society of Environmental Restoration Technology 22(6): 115-124.
  13. Kim, T. H., S. Y. Park, E. H. Park, and S. W. Jang(2014) A study for the computer simulation on the flood prevention function of the extensive green roof in connection with RCP 8.5 scenarios, The Korea Society of Environmental Restoration Technology 17(3): 1-11.
  14. Lora, M., M. Camporese, P. Salandin(2016) Design and performance of a nozzle-type rainfall simulator for landslide triggering experiments. CATENA, 140: 77-89. https://doi.org/10.1016/j.catena.2016.01.018
  15. Ministry of Environment(2016) You can see right away. Fine dust, what is it?
  16. Park, J. H. (2019) An analysis on Peak Runoff Rate of LID System through Artificial Rainfall Monitoring. Sangmyung University Master's Degree Thesis.
  17. Saxton, K. E. and W. J. Rawls(2006) Soil water characteristic estimates by texture and organic matter for hydrologic solutions. Soil Science Society of America Journal 70(5): 1569-1578. https://doi.org/10.2136/sssaj2005.0117
  18. Shin, D. S., J. B. Park, D. K. Kang, and D. J. Jo(2013) An analysis of runoff mitigation effect using SWMM-LID model for frequently inundated basin. Journal of Korean Society of Hazard Mitigation 13(4): 303-309. https://doi.org/10.9798/KOSHAM.2013.13.4.303
  19. Small and Medium Business Administration(2018) Development of Rainwater Runoff and Delay Technology for Restoration of Urban Ecosystem.
  20. Song, J. W. and J. H. Im(2007) An experimental study on runoff reducing effect of infiltration-storage system due to rainfall intensity. Journal of the Korean Society of Hazard Mitigation 7(4): 85-95(in Korean with English summary).
  21. Weiss, M., F. Baret, G. J. Smith and I. Jonckheere(2004) Methods for in situ leaf area index measurement, part II: from gap fraction to leaf area index: retrieval methods and sampling strategies. Agric. For. Meteorol 121: 17-53.