DOI QR코드

DOI QR Code

Vibration behavior of functionally graded sandwich beam with porous core and nanocomposite layers

  • Si, Hua (School of Civil Engineering & Architecture, Xinxiang university) ;
  • Shen, Daoming (School of Civil Engineering & Architecture, Xinxiang university) ;
  • Xia, Jinhong (School of Civil Engineering & Architecture, Xinxiang university) ;
  • Tahouneh, Vahid (Young Researchers and Elite Club, Islamshahr Branch, Islamic Azad University)
  • Received : 2020.01.13
  • Accepted : 2020.06.01
  • Published : 2020.07.10

Abstract

In steel-concrete composite beams, to improve the cracking resistance of the concrete slab in the hogging moment region, a new type of connector in the interface, named uplift-restricted and slip-permitted screw-type (URSP-S) connector has been proposed. This paper focuses on the behavior of steel-concrete composite beams with URSP-S connectors. A total of three beam specimens including a simply supported beam with URSP-S connectors and two continuous composite beams with different connectors arrangements were designed and tested. More specifically, one continuous composite beam was equipped with URSP-S connectors in negative moment region and traditional shear studs in other regions. For comparison, the other one was designed with only traditional shear studs. The failure modes, crack evolution process, ultimate capacities, strain responses at different locations as well as the interface slip of the three tested specimens were measured and evaluated in-depth. Based on the experimental study, the research findings indicate that the larger slip deformation is allowed while using URSP-S connectors. Meanwhile, the tensile stress reduces and the cracking resistance of the concrete slab improves accordingly. In addition, the overall stiffness and strength of the composite beam become slightly lower than those of the composite beam using traditional shear studs. Moreover, the arrangement suggestion of URSP-S connectors in the composite beam is discussed in this paper for its practical design and application.

Keywords

Acknowledgement

The research described in this paper, supported by the National Natural Science Foundation of China (No. 41877251).

References

  1. Ahmed Houari, M.S., Bessaim, A., Bernard, F., Tounsi, A. and Mahmoud, S.R. (2018), "Buckling analysis of new quasi-3D FG nanobeams based on nonlocal strain gradient elasticity theory and variable length scale parameter", Steel Compos. Struct., 28(1), 13-24. https://doi.org/10.12989/scs.2018.28.1.013.
  2. Affdl Halpin, J.C. and Kardos, J.L. (1976), "The Halpin-Tsai equations: A review", Polym. Eng. Sci., 16(5), 344-352. https://doi.org/10.1002/pen.760160512.
  3. Arefi, M. (2015), "Elastic solution of a curved beam made of functionally graded materials with different cross sections', Steel Compos. Struct., 18(3), 659-672. https://doi.org/10.12989/scs.2015.18.3.659.
  4. Arioui, O., Belakhdar, K., Kaci, A. and Tounsi, A. (2018), "Thermal buckling of FGM beams having parabolic thickness variation and temperature dependent materials", Steel Compos. Struct., 27(6), 777-788. https://doi.org/10.12989/scs.2018.27.6.777.
  5. Bambaeechee, M. (2019), "Free vibration of AFG beams with elastic end restraints", Steel Compos. Struct., 33(3), 403-432. https://doi.org/10.12989/scs.2019.33.3.403.
  6. Barka, M., Benrahou, K.H., Bakora, A. and Tounsi, A. (2016), "Thermal post-buckling behavior of imperfect temperaturedependent sandwich FGM plates resting on Pasternak elastic foundation", Steel Compos. Struct., 22(1), 91-112. https://doi.org/10.12989/scs.2016.22.1.091.
  7. Bouguenina, O., Belakhdar, K., Tounsi, A. and Bedia, E.A.A. (2015), "Numerical analysis of FGM plates with variable thickness subjected to thermal buckling", Steel Compos. Struct., 19(3), 679-695. https://doi.org/10.12989/scs.2015.19.3.679.
  8. Bennai, R., Ait Atmane, H. and Tounsi, A. (2015), "A new higherorder shear and normal deformation theory for functionally graded sandwich beams", Steel Compos. Struct., 19(3), 521-546. https://doi.org/10.12989/scs.2015.19.3.521.
  9. Bert, C.W. and Malik, M. (1996), "Differential quadrature method in computational mechanics: a review", Appl. Mech. Rev., 49, 1-27. https://doi.org/10.1115/1.3101882.
  10. Bouchafa, A., Bouiadjra, M.B., Houari, M.S.A. and Tounsi, A. (2015), "Thermal stresses and deflections of functionally graded sandwich plates using a new refined hyperbolic shear deformation theory", Steel Compos. Struct., 18(6), 1493-1515. https://doi.org/10.12989/scs.2015.18.6.1493.
  11. Celep, Z. (1980), "Stability of a beam on an elastic foundation subjected to a nonconservative load", J. Appl. Mech., 47(1), 116-120. https://doi.org/10.1115/1.3153587.
  12. Chen, C.S., Liu, F.H. and Chen, W.R. (2017), "vibration and stability of initially stressed sandwich plates with FGM face sheets in thermal environments", Steel Compos. Struct., 23(3), 251-261. https://doi.org/10.12989/scs.2017.23.3.251.
  13. Du, H., Liew, K.M. and Lim, M.K. (1996), "Generalized differential quadrature method for buckling analysis", J. Eng. Mech., 122(2), 95-100. https://doi.org/10.1061/(ASCE)0733-9399(1996)122:2.
  14. Ebrahimi, S., Zahrai, S.M. and Mirghaderi, S.R. (2019), "Numerical study on force transfer mechanism in through gusset plates of SCBFs with HSS columns & beams", Steel Compos. Struct., 31(6), 541-558. https://doi.org/10.12989/scs.2019.31.6.541.
  15. Finot, M. and Suresh, S. (1996), "Small and large deformation of thick and thin-film multilayers: effect of layer geometry, plasticity and compositional gradients", J. Mech. Phys. Solids, 44(5), 683-721. https://doi.org/10.1016/0022-5096(96)84548-0.
  16. Hadji, L., Daouadji, T.H., Tounsi, A. and Bedia, E.A. (2014), "A higher order shear deformation theory for static and free vibration of FGM beam", Steel Compos. Struct., 16(5), 507-519. https://doi.org/10.12989/scs.2014.16.5.507.
  17. Halpin, J.C. and Tsai, S.W. (1969), "Effects of environmental factors on composite materials", AFML-TR-67-423.
  18. Hauger, W. and Vetter, K. (1976), "Influence of an elastic foundation on the stability of a tangentially loaded column", J. Sound Vib., 47(2), 296-299. https://doi.org/10.1016/10.1016/0022-460x(76)90726-4.
  19. Karami, G., Malekzadeh, P. and Shahpari, S. (2003), "A DQEM for vibration of deformable non-uniform beams with general boundary conditions", Eng. Struct., 25, 1169-1178. https://doi.org/10.1016/S0141-0296(03)00065-8.
  20. Kitipornchai, S., Chen, D. and Yang, J. (2017), "Free vibration and elastic buckling of functionally graded porous beams reinforced by graphene platelets", Mater. Design, 116, 656-665. https://doi.org/10.1016/j.matdes.2016.12.061.
  21. Koizumi, M. (1993), "The concept of FGM", Ceram. Trans. Funct. Grad. Mater., 34, 3-10.
  22. Lee, S.Y., Yang, C.C. (1994), "Nonconservative instability of nonuniform beams resting on an elastic foundation", J. Sound Vib., 169, 433-444. https://doi.org/10.1006/jsvi.1994.1027.
  23. Lai, B., Richard, J.Y. and Xiong, M. (2019), "Experimental and analytical investigation of composite columns made of high strength steel and high strength concrete", Steel Compos. Struct., 33(1), 67-79. https://doi.org/10.12989/scs.2019.33.1.067.
  24. Leissa, A.W., McGee, O.G. and Huang, C.S. (1993), "Vibrations of sectorial plates having corner stress singularities", J. Appl. Mech. Transactions of the ASME, 60(1), 134-140. https://doi.org/10.1115/1.2900735.
  25. Liu, R. and Wang, L. (2015), "Thermal vibration of a singlewalled carbon nanotube predicted by semiquantum molecular dynamics", Physical Chemistry Chemical Physics, 7. https://doi.org/10.1039/C4CP05495D.
  26. Li, X., Zhou, X., Liu J. and Wang, X. (2019), "Shear behavior of short square tubed steel reinforced concrete columns with highstrength concrete", Steel Compos. Struct., 32(3), 411-422. https://doi.org/10.12989/scs.2019.32.3.411.
  27. Mahmoud, A.A., Awadalla, R. and Nassar, N.M. (2011), "Free vibration of non-uniform column using DQM", Mech. Res. Commun., 38, 443-448. https://doi.org/10.1016/j.mechrescom.2011.05.015.
  28. Marin, M. (2010), "Lagrange identity method for microstretch thermoelastic materials", J. Math. Anal. Appl., 363(1), 275-286'. https://doi.org/10.1016/j.jmaa.2009.08.045.
  29. Marin, M. (2010), "Some estimates on vibrations in thermoelasticity of dipolar bodies", J. Vib. Control, 16(1), 33-47. https://doi.org/10.1177/1077546309103419.
  30. Marin, M., Agarwal, R.P. and Mahmoud, S.R. (2013), "Nonsimple material problems addressed by the Lagrange's identity", Bound. Value Probl, 2013(1-14). https://doi.org/10.1186/1687-2770-2013-135.
  31. Marin, M. and Nicaise, S. (2016), "Existence and stability results for thermoelastic dipolar bodies with double porosity", Continuum Mech. Thermodyn., 28(6), 1645-1657. https://doi.org/10.1007/s00161-016-0503-4.
  32. Marin, M., Ellahi, R. and Adina, C. (2017), "On solutions of Saint-Venant's problem for elastic dipolar bodies with voids", Carpathian J. Math., 33(2), 219-232. https://doi.org/10.37193/CJM.2017.02.09
  33. Marin, M., Craciun, E.M. and Pop, N. (2016), "Considerations on mixed initial boundary value problems for micropolar porous bodies", Dyn. Syst. Appl., 25(1), 175-195.
  34. Martone, A., Faiella, G., Antonucci, V., Giordano, M. and Zarrelli, M. (2011), "The effect of the aspect ratio of carbon nanotubes on their effective reinforcement modulus in an epoxy matrix", Compos. Sci. Technol., 71(8), 1117-1123. https://doi.org/10.1016/j.compscitech.2011.04.002.
  35. Mirjavadi, S.S., Afshari, B.M., Shafiei, N., Hamouda, A.M.S. and Kazemi, M. (2017), "Thermal vibration of two-dimensional functionally graded (2D-FG) porous Timoshenko nanobeams", Steel Compos. Struct., 25(4), 415-426. https://doi.org/10.12989/scs.2017.25.4.415.
  36. Montazeri, A., Javadpour, J., Khavandi, A., Tcharkhtchi, A. and Mohajeri, A. (2010), "Mechanical properties of multi-walled carbon nanotube/epoxy composites", Mater. Des., 31, 4202-4208. https://doi.org/10.1016/j.matdes.2010.04.018.
  37. Moradi-Dastjerdi, R. and Momeni-Khabisi, H. (2016), "Dynamic analysis of functionally graded nanocomposite plates reinforced by wavy carbon nanotube", Steel Compos. Struct., 22(2). https://doi.org/10.12989/scs.2016.22.2.277.
  38. Moradi-Dastjerdi, R., Foroutan, M. and Pourasghar, A. (2013), "Dynamic analysis of functionally graded nanocomposite cylinders reinforced by carbon nanotube by a mesh-free method", Mater. Des., 44, 256-266. https://doi.org/10.1016/j.matdes.2012.07.069
  39. Nguyen, D.K. and Tran, T.T. (2018), "Free vibration of tapered BFGM beams using an efficient shear deformable finite element model", Steel Compos. Struct., 29(3), 363-377. https://doi.org/10.12989/scs.2018.29.3.363.
  40. Nguyen, X.H., Le, D.D. and Nguyen, Q.H. (2019), "Static behavior of novel RCS through-column-type joint: Experimental and numerical study", Steel Compos. Struct., 32(1), 111-126. https://doi.org/10.12989/scs.2019.32.1.111.
  41. Park, W.T., Han, S.C., Jung, W.Y. and Lee, W.H. (2016), "Dynamic instability analysis for S-FGM plates embedded in Pasternak elastic medium using the modified couple stress theory", Steel Compos. Struct., 22(6), 1239-1259. https://doi.org/10.12989/scs.2016.22.6.1239.
  42. Pelletier Jacob, L. and Vel Senthil,S. (2006), "An exact solution for the steady state thermo elastic response of functionally graded orthotropic cylindrical shells", Int. J. Solid Struct., 43, 1131-1158. https://doi.org/10.1016/j.ijsolstr.2005.03.079.
  43. Quan, J.R. and Chan, C.T. (1989), "New insights in solving distributed system equation by the quadrature methods", Comput. Chem. Eng., 13, 779-788. https://doi.org/10.1016/0098-1354(89)85051-3.
  44. Sharma, A., Sharda, H.B. and Nath, Y. (2005a), "Stability and vibration of Mindlin sector plates: an analytical approach", AIAA J., 43(5), 1109-1116. https://doi.org/10.2514/1.4683.
  45. Sharma, A., Sharda, H.B. and Nath, Y. (2005b), "Stability and vibration of thick laminated composite sector plates", J. Sound Vib., 287(1-2), 1-23. https://doi.org/10.1016/j.jsv.2004.10.030.
  46. Shafiei, H. and Setoodeh, A.R. (2017), "Nonlinear free vibration and post-buckling of FG-CNTRC beams on nonlinear foundation", Steel Compos. Struct., 24(1), 65-77. https://doi.org/10.12989/scs.2017.24.1.065.
  47. Shen H.S. (2009), "Nonlinear bending of functionally graded carbon nanotube reinforced composite plates in thermal environments", Compos. Struct., 91(1), 9-19. https://doi.org/10.1016/j.compstruct.2009.04.026
  48. Shen, H.S. and Zhang, C.L. (2010), "Thermal buckling and postbuckling behavior of functionally graded carbon nanotubereinforced composite plates", Mater. Des., 31(7), 3403-3411. https://doi.org/10.1016/j.matdes.2010.01.048
  49. Shu, C. and Du, H. (1997a), "Implementation of clamped and simply supported boundary conditions in the GDQ free vibration analysis of beams and plates", Int. J. Solids. Struct., 34, 819-835. https://doi.org/10.1016/S0020-7683(96)00057-1.
  50. Shu, C. and Du, H. (1997b), "A generalized approach for implementing general boundary conditions in the GDQ free vibration analysis of plates", Int. J. Solids. Struct., 34, 837-846. https://doi.org/10.1016/S0020-7683(96)00056-X.
  51. Shu, C. (2000), "Differential Quadrature and Its Application in Engineering", Springer, Berlin.
  52. Smith, T.E. and Herrmann, G. (1972), "Stability of a beam on an elastic foundation subjected to a follower force", J. Appl. Mech., 39, 628-629. https://doi.org/10.1115/1.3422743.
  53. Song, Y., Uy, B. and Wang, J. (2019), "Numerical analysis of stainless steel-concrete composite beam-to-column joints with bolted flush endplates", Steel Compos. Struct., 33(1), 143-162. https://doi.org/10.12989/scs.2019.33.1.143.
  54. Sundararajan, C. (1974), "Stability of columns on elastic foundations subjected to conservative or nonconservative forces", J. Sound Vib., 37(1), 79-85. https://doi.org/10.1016/S0022-460X(74)80059-3.
  55. Tahouneh, V. (2016), "Using an equivalent continuum model for 3D dynamic analysis of nanocomposite plates", Steel Compos. Struct., 20(3), 623-649. https://doi.org/10.12989/scs.2016.20.3.623.
  56. Tahouneh, V. (2017), "The effect of carbon nanotubes agglomeration on vibrational response of thick functionally graded sandwich plates", Steel Compos. Struct., 24(6), 711-726. https://doi.org/10.12989/scs.2017.24.6.711.
  57. Tornabene, F., Bacciocchi, M., Fantuzzi, N. and Reddy, J.N. (2018), "Multiscale Approach for Three-Phase CNT/Polymer/Fiber Laminated Nanocomposite Structures", Polymer Composites, In Press, DOI: 10.1002/pc.24520.
  58. Tornabene, F., Fantuzzi, N., Ubertini, F. and Viola, E. (2015), "Strong formulation finite element method based on differential quadrature: A survey", Appl. Mech. Rev., 67(2), 1-55. https://doi.org/10.1115/1.4028859.
  59. Tornabene, F., Fantuzzi, N. and Bacciocchi, M. (2019), "Refined shear deformation theories for laminated composite arches and beams with variable thickness: Natural frequency analysis", Eng. Anal. Bound. Elem., 100, 24-47. https://doi.org/10.1016/j.enganabound.2017.07.029.
  60. Tornabene, F., Fantuzzi, N. and Bacciocchi, M. (2017), "Foam core composite sandwich plates and shells with variable stiffness: Effect of the curvilinear fiber path on the modal response", J. Sandw. Struct. Mater., 21(1), 320-365. https://doi.org/10.1177/1099636217693623.
  61. Wagner, H.D., Lourie, O. and Feldman, Y. (1997), "Stress-induced fragmentation of multiwall carbon nanotubes in a polymer matrix", Appl. Phys. Lett., 72(2), 188-190. https://doi.org/10.1063/1.120680.
  62. Wang, X. and Bert, C.W. (1993), "A new approach in applying differential quadrature to static and free vibrational analysis of beam and plates", J. Sound Vib., 162(3), 566-572. https://doi.org/10.1006/jsvi.1993.1143.
  63. Wang, J. and Sun, Q. (2019), "Seismic behavior of Q690 circular HCFTST columns under constant axial loading and reversed cyclic lateral loading", Steel Compos. Struct., 32(2), 199-212. https://doi.org/10.12989/scs.2019.32.2.199.
  64. Wattanasakulpong, and Ungbhakorn, V. (2013), "Analytical solutions for bending, buckling and vibration responses of carbon nanotube-reinforced composite beams resting on elastic foundation", Comput. Mater. Sci., 71 201-208. https://doi.org/10.1016/j.commatsci.2013.01.028
  65. Wu, C.P. and Liu, Y.C. (2016), "A state space meshless method for the 3D analysis of FGM axisymmetric circular plates", Steel Compos. Struct., 22(1), 161-182. https://doi.org/10.12989/scs.2016.22.1.161.
  66. Xu, W., Wang, L. and Jiang, J. (2016), "Strain gradient finite element analysis on the vibration of double-layered graphene sheets", Int. J. Comput. Method., 13(3). https://doi.org/10.1142/S0219876216500110.
  67. Yaghoobi, H., Valipour, M.S., Fereidoon, A. and Khoshnevisrad, P. (2014), "Analytical study on post-buckling and nonlinear free vibration analysis of FG beams resting on nonlinear elastic foundation under thermo-mechanical loadings using VIM", Steel Compos. Struct., 17(5), 753-776. https://doi.org/10.12989/scs.2014.17.5.753.
  68. Yas, M. and Samadi, N. (2012), "Free vibrations and buckling analysis of carbon nanotube-reinforced composite Timoshenko beams on elastic foundation", Int. J. Pressure Vessel. Piping, 98, 119-128. https://doi.org/10.1016/j.ijpvp.2012.07.012
  69. Yeh, M.K., Tai, N.H. and Liu, J.H. (2006), "Mechanical behavior of phenolic-based composites reinforced with multi-walled carbon nanotubes", Carbon, 44(1), 1-9. https://doi.org/10.1016/j.carbon.2005.07.005.
  70. Yusheng, F. and Bert, C.W. (1992), "Application of quadrature method to flexural vibration analysis of a geometrically nonlinear beam", J. Nonlinear Dynam., 3, 13-18. https://doi.org/10.1007/BF00045468
  71. Zhang, Y. and Wang, L. (2018), "Thermally stimulated nonlinear vibration of rectangular single-layered black phosphorus", J. Appl. Phys., 124(13), 10.1063/1.5047584. https://doi.org/10.1063/1.5047584.
  72. Zhu, X.H. and Meng, Z.Y. (1995), "Operational principle fabrication and displacement characteristics of a functionally gradient piezoelectricceramic actuator", Sens. Actuators, 48(3), 169-176. https://doi.org/10.1016/0924-4247(95)00996-5.

Cited by

  1. Free vibration analysis of open-cell FG porous beams: analytical, numerical and ANN approaches vol.40, pp.2, 2021, https://doi.org/10.12989/scs.2021.40.2.157