DOI QR코드

DOI QR Code

PAC을 포함한 삼성분계 시멘트의 역학적 특성

Mechanical Properties of Ternary Blended Cement Containing PAC

  • Kim, Taewan (Department of Civil Engineering, Pusan National University) ;
  • Cheung, Jin-Hwan (Department of Civil Engineering, Pusan National University) ;
  • Kim, Seong-Do (Department of Civil Engineering, Kyungsung University) ;
  • Kim, In-Tae (Department of Civil Engineering, Pusan National University)
  • 투고 : 2020.05.30
  • 심사 : 2020.06.24
  • 발행 : 2020.06.30

초록

본 연구는 OPC-slag-FA의 삼성분계 시멘트에 PAC을 혼합하여 강도 특성에 대한 특성을 살펴보는 실험적 연구이다. 결합재는 80% OPC+10% slag+10% FA, 60% OPC+20% slag+20%FA, and 40% OPC+30% slag+30% FA의 세 종류이다. PAC은 mixing-water 중량의 0, 2, 4, 6, 8, and 10%를 사용하였다. 실험결과 PAC은 OPC의 양에 관계없이 압축강도를 향상시킨다. PAC은 portlandite를 소비하고 Friedel's salt를 형성하며 공극의 직경을 감소시켜 matrix를 치밀하게 만들어 압축강도 향상에 기여한다. 그러나 다공성의 FA 입자는 초기수화단계에서 PAC을 흡수하여 수화작용을 지연시키는 효과가 있었다. 따라서 FA의 사용은 수화지연효과를 고려하여 치환율을 결정할 필요가 있다.

The present study is an experimental study to investigate the characteristics of strength by mixing polyaluminum chloride(PAC) with OPC-slag-FA ternary blended cement. There are three types of binders: 80% OPC + 10% slag + 10% FA, 60% OPC + 20% slag + 20% FA, and 40% OPC + 30% slag + 30% FA. PACs used 0, 2, 4, 6, 8, and 10% of the mixing-water weight. Experimental results show that PAC improves compressive strength regardless of the amount of OPC. PAC consumes portlandite, forms Friedel's salt, and reduces the diameter of the pores, making the matrix compact, contributing to the improvement of compressive strength. However, porous FA particles had an effect of delaying hydration by absorbing PAC in the initial hydration step. Therefore, the use of FA needs to determine the substitution rate in consideration of the hydration delay effect.

키워드

참고문헌

  1. Abate, C., Scheetz, B.E. (1995). Aqueous phase equilibria in the system CaO-Al2O3-CaCl2-H2O: The significance and stability of friedel's salt, Journal of the American Ceramic Society, 78, 939-944. https://doi.org/10.1111/j.1151-2916.1995.tb08418.x
  2. Bae, J.Y., Cho, S.H., Shin, H.J., Kim, Y.Y. (2013). A comparative study on strength development, chloride diffusivity and adiabatic temperature rise of marine concrete depending on binder type, Journal of the Korea Concrete Institute, 25(4), 411-418 [in Korean]. https://doi.org/10.4334/JKCI.2013.25.4.411
  3. Balonis, M., Lothenbach, B., Le Saout, G., Glasser, F.P. (2010). Impact of chloride on the mineralogy of hydrated Portland cement systems, Cement and Concrete Research, 40, 1009-1022. https://doi.org/10.1016/j.cemconres.2010.03.002
  4. Chen, W., Li, B., Li, Q., Tian, J. (2016). Effect of polyaluminum chloride on the properties and hydration of slag-paste, Construction and Building Materials, 124, 1019-1027. https://doi.org/10.1016/j.conbuildmat.2016.08.154
  5. Elakneswaran, Y., Nawa, T., Kurumisawa, K. (2009). Electrokinetic potential of hydrated cement in relation to adsorption of chlorides, Cement and Concrete Research, 39 340-344. https://doi.org/10.1016/j.cemconres.2009.01.006
  6. Glasser, F.P., Kindness, A., Stronach, S.A. (1991). Stability and solubility relationships in AFm phases part I. Chloride, sulfate and hydroxide, Cement and Concrete Research, 29, 861-866. https://doi.org/10.1016/S0008-8846(99)00055-1
  7. Goni, S., Frias, M., de la Villa, R.V, Garcia, R. (2013). Sodium chloride effect on durability of ternary blended cement, Microstructural characterization and strength, Composites: Part B, 54, 163-168. https://doi.org/10.1016/j.compositesb.2013.05.002
  8. Hadj-sadok, A., Kenai, S., Courard, L., Darimont, A. (2011). Microstructure and durability of mortars modified with medium active blast furnace slag, Construction and Building Materials, 25, 1018-1025. https://doi.org/10.1016/j.conbuildmat.2010.06.077
  9. Hong, S.I., Kim, Y.K., Ann, K.Y. (2017). Durability evaluation of ternary blended concrete structures under chloride-laden environment, Journal of the Korea Concrete Institute, 29(5), 493-498 [in Korean]. https://doi.org/10.4334/JKCI.2017.29.5.493
  10. Hwang, B.I., Kang, S.P., Kim, S.J. (2018). A study on the factors affecting the strength of alkali-activated slag binders, Journal of the Korean Recycled Construction Resources Institute, 6(2), 130-137. https://doi.org/10.14190/JRCR.2018.6.2.130
  11. Jeon, B., Kim, H., Lee, S. (2018). A study on the evaluation of the carbonation resistance and properties ternary blended concrete according to replacement ratio of blast furnace slag and fly ash, Journal of the Korea Concrete Institute, 30(1), 23-30 [in Korean]. https://doi.org/10.4334/jkci.2018.30.1.023
  12. Kim, J.S. (2000). The Study on Removal of Heavy Metal using Polyaluminum Chloride, Master's Thesis, Environmental Engineering, Cheongju University [in Korean].
  13. Kim, M.H., Choi, S.J., Kang, S.P., Kim, J.H., Jang, J.H. (2002). A study on the application of non-destructive testing equation for the estimation of compressive strength of high strength concrete, Journal of Korea Institute of Building Construction, 2(3), 123-130 [in Korean]. https://doi.org/10.5345/JKIC.2002.2.3.123
  14. Kim, S.W., Cha, J.H., Kim, Y.Y., Yun, H.D. (2010). Mechanical properties of strain hardening cement-based composite(SHCC) with recycled materials, Journal of the Korea Concrete Institute, 22(5), 727-736 [in Korean]. https://doi.org/10.4334/JKCI.2010.22.5.727
  15. Kim, T. (2019). The effects of polyaluminum chloride on the mechanical and microstructural properties of alkali-activated slag paste, Cement and Concrete Composites, 96, 46-54. https://doi.org/10.1016/j.cemconcomp.2018.11.010
  16. Kim, T., Kang, C., Hong, S., Seo, K. (2019a). Investigating the effects of polyaluminum chloride on the properties of ordinary portland cement, Materials, 12(20), 3209. https://doi.org/10.3390/ma12193209
  17. Kim, T., Kim, I.T., Seo, K.Y., Park, H.J. (2019b). Strength and pore characteristics of OPC-slag paste mixed with polyaluminum chloride, Construction and Building Materials, 223, 616-628. https://doi.org/10.1016/j.conbuildmat.2019.07.009
  18. Lee, B.K., Kim G.Y., Kim, G.T., Shin, K.U., Nam, J.S. (2017). Chloride ion penetration resistance of slag-replaced concrete and cementless slag concrete by marine environmental exposure, Journal of the Korea Concrete Institute, 29(3), 299-306 [in Korean]. https://doi.org/10.4334/JKCI.2017.29.3.299
  19. Lim, M.H., Lee, D.K., Shin, K.J., Song, K.I., Song, J.K. (2019). Validation of test methods for chloride penetration durability of alkali activated slag, Journal of the Korean Recycled Construction Resources Institute, 7(1), 1-7 [in Korean]. https://doi.org/10.14190/JRCR.2019.7.1.1
  20. Park, J.S., Yoon, Y.S., Kwon, S.J. (2017). Strength and resistance to chloride penetration in concrete containing GGBFS with ages, Journal of the Korea Concrete Institute, 29(3), 307-314 [in Korean]. https://doi.org/10.4334/JKCI.2017.29.3.307
  21. Suryavanshi, A.K., Scantlebury, J.D., Lyon, S.B. (1996). Mechanism of friedel's salt formation in cements rich in tri-calcium aluminate, Cement and Concrete Research, 26, 717-727. https://doi.org/10.1016/S0008-8846(96)85009-5
  22. Talero, R. (2012). Synergic effect of Friedel's salt from pozzolan and from OPC coprecipitating in a chloride solution, Construction and Building Materials, 33, 164-180. https://doi.org/10.1016/j.conbuildmat.2011.12.040
  23. Tang, H., Xiao, F., Wang, D. (2015). Speciation, stability, and coagulation mechanisms of hydroxyl aluminum clusters formed by PACl and alum: A critical review, Advances in Colloid and Interface Science, 226, 78-85. https://doi.org/10.1016/j.cis.2015.09.002
  24. Thomas, M.D.A., Hooton, R.D., Scott, A., Zibara, H. (2012). The effect of supplementary cementitious materials on chloride binding in hardened paste, Cement and Concrete Research, 42, 1-7. https://doi.org/10.1016/j.cemconres.2011.01.001
  25. Wei, N., Zhang, Z., Liu, D., Wu, Y., Wang, J., Wang, Q. (2015). Coagulation behavior of polyaluminum chloride: Effects of pH and coagulant dosage, Chinese Journal of Chemical Engineering, 23, 1041-1046. https://doi.org/10.1016/j.cjche.2015.02.003
  26. Yang, Z., Gao, Y., Mu, S., Chang, H., Sun, W., Jiang, J. (2019). Improving the chloride binding capacity of paste by adding nano-$Al_2O_3$, Construction and Building Material,s 195, 415-422. https://doi.org/10.1016/j.conbuildmat.2018.11.012
  27. Zhang, Z., Wang, J., Liu, D., Li, J., Wang, X., Song, B., Yue, B., Zhao, K., Song, Y. (2017). Hydrolysis of polyaluminum chloride prior to coagulation: Effects on coagulation behavior and implications for improving coagulation performance, Journal of Environmental Sciences, 57, 162-169. https://doi.org/10.1016/j.jes.2016.10.014
  28. Zhenguo, S., Geiker, M.R., De Weerdt, K., Ostnor, T.A., Lothenbach, B., Winnefeld, F., Skibsted, J. (2017). Role of calcium on chloride binding in hydrated portland cement-metakaolin-limestone blends, Cement and Concrete Research, 95, 205-216. https://doi.org/10.1016/j.cemconres.2017.02.003