DOI QR코드

DOI QR Code

시멘트 페이스트 및 지오폴리머 내의 PLA 섬유의 용해성 평가

Evaluation of PLA Fiber Dissolution in Cement Paste and Geopolymer

  • 김주형 (한국건설생활환경시험연구원 건설기술연구센터) ;
  • 권성준 (한남대학교 토목환경공학과)
  • Kim, Joo-Hyung (Construction Technology Research Center, Korea Conformity Laboratories) ;
  • Kwon, Seung-Jun (Department of Civil and Environmental Engineering, Hannam University)
  • 투고 : 2020.04.27
  • 심사 : 2020.06.17
  • 발행 : 2020.06.30

초록

PLA(Poly-Lactic Acid)섬유는 친환경소재이며 자연분해가 되므로 건설재료에 사용할 경우 내부 공극연결구조를 가진 다공성 재료의 제조가 가능하다. 본 연구에서는 국내에서 생산된 PLA 섬유(직경 0.5mm, 1.0mm, 길이 10mm)를 대상으로 강알칼리와 고온에서의 용해실험을 수행하였으며, 이를 이용하여 FA기반 지오폴리머에 활용하였다. 고온양생과 강알칼리 용액을 통하여 강도는 확보하였으나, 완전한 PLA 섬유의 용해을 확보하지 못하였다. 기존의 연구인 0.003mm의 직경에서는 완전히 용해하였으나 0.5mm는 약 42.5%, 1.0mm는 약 33.3%의 용해율을 가지고 있는 것으로 평가되었다. 또한 섬유의 체적이 커짐에 따라 양생시 부유하는 섬유가 발생하여 작업성과 용해에 부정적인 영향을 나타내었다. PLA 특성은 생산하는 원재료와 생산조건에 따라 달라질 수 있으나, 다공성 건설 자재로서 사용하기 위해서는 0.1mm 내외의 PLA 섬유의 사용이 바람직하다고 판단된다.

Poly-Lactic Acid(PLA) fiber is an eco-friendly material and is biodegradable, so it can be utilized for manufacturing porous construction materia ls with interna l pore connection. In this study, domestic PLA fiber products(0.5mm india meter, 1.0mm in length, 10mm in length) were tested for melting at high temperatures and high alkality, and they were incorporated with FA-based geopolymer. Compressive strength was obtained through high temperature curing and alkali activator, however the complete melting of the PLA fiber was not ensured. The previous study handling PLA fiber with 0.003mm in diameter was completely dissolved, but 0.5mm and 1.0mm in diameter showed 42.5% and 33.3% of dissolution ratio, respectively. In addition, the increasing fiber volume led floating fibers during curing, which had a negative effect on its workability and solubility. Although the properties of PLA fiber may vary depending on the raw materials and production conditions, PLA fiber with 0.1mm or less diameter is recommended for porous construction material.

키워드

참고문헌

  1. Bakharev, T. (2005). Geopolymeric materials prepared using Class F fly ash and elevated temperature curing, Cement and Concrete Research, 35(6), 1224-1232. https://doi.org/10.1016/j.cemconres.2004.06.031
  2. Choe, J.I., Lee, Y.S. (2015). A study on the impact of PM 2.5 emissions on respiratory diseases, Journal of the Korea Environment Institute, 23(4), 155-172.
  3. Hardjito, D., Wallah, S.E., Sumajouw, D.M., Rangan, B.V. (2004). On the development of fly ash-based geopolymer concrete, Materials Journal, 101(6), 467-472.
  4. Kovalchuk, G., Ferndez-Jimez, A., Palomo, A. (2007). Alkaliactivated fly ash : Effect of thermal curing conditions on mechanical and microstructural development - Part II, Fuel, 86(3), 315-322. https://doi.org/10.1016/j.fuel.2006.07.010
  5. Kwon, S.J. (2016). Effect of mineral admixture on $CO_2$ emissions and absorption in relation to service life and varying $CO_2$ concentrations, International Journal of Sustainable Building Technology and Urban Development, 7(3-4), 1-9. https://doi.org/10.1080/2093761X.2016.1187817
  6. Kwon, S.J., Hwang, S.H., Cho, Y.K., Kim, T.S., Moon, E.J. (2019). Characteristic evaluation of FA-based geopolymer with PLA fiber, Journal of the Korean Recycled Construction Resources Institute, 7(3), 187-193. https://doi.org/10.14190/JRCR.2019.7.3.187
  7. Lee, J.W., Choi, J.P., Kang, J.K., Kim, D.E., Yoo, S.W. (2017). A study on biomimicry methods for reducing fine dust in buildings, Journal of the Architectural Institute of Korea Planning & Design, 33(1), 11-20. https://doi.org/10.5659/JAIK_PD.2017.33.1.11
  8. Lee, S.H., Park, W.J., Lee, H.S. (2013). Lifecycle $CO_2$ assessment method for concrete using $CO_2$ balance and suggestion to decrease $LCCO_2$ of concrete in South-Korean apartment, Energy and Buildings, 58, 93-102. https://doi.org/10.1016/j.enbuild.2012.11.034
  9. Lloyd, N., Rangan, V. (2010). Geopolymer concrete with fly ash, In Proceedings of the Second International Conference on Sustainable Construction Materials and Technologies, UWM Center for By-Products Utilization, 1493-1504.
  10. Ma, Y., Hu, J., Ye, G. (2013). The pore structure and permeability of alkali activated fly ash, Fuel, 104, 771-780. https://doi.org/10.1016/j.fuel.2012.05.034
  11. OECD POLICY HIGHLIGHTS The economic consequences of outdoor air pollution (2016). https://www.oecd.org/environment/indicators-modelling-outlooks/Policy-Highlights-Economicconsequences-of-outdoor-air-pollution-web.pdf
  12. Okada, K., Imase, A., Isobe, T., Nakajima, A. (2011). Capillary rise properties of porous geopolymers prepared by an extrusion method using polylactic acid (PLA) fibers as the pore formers, Journal of the European Ceramic Society, 31(4), 461-467. https://doi.org/10.1016/j.jeurceramsoc.2010.10.035
  13. Olivia, M., Nikraz, H. (2012). Properties of fly ash geopolymer concrete designed by Taguchi method, Materials & Design (1980-2015), 36, 191-198. https://doi.org/10.1016/j.matdes.2011.10.036
  14. Rasoulia, H.R., Golestani-fard, F., Mirhabibia, A.R., Nasab, G.M., Mackenzie, K.J.D., Shahraki, M.H. (2015). Fabrication and properties of micro porous metakaolin-based geopolymer bodies with poly lactic acid(PLA) fibers as pore generators, Ceramics International, 41(6), 7872-7880. https://doi.org/10.1016/j.ceramint.2015.02.125