DOI QR코드

DOI QR Code

Compressive Strength and Tensile Properties of High Volume Slag Cement Composite Incorporating Phase Change Material

상변화 물질을 함유한 하이볼륨 슬래그 시멘트 복합재료의 압축강도와 인장특성

  • 강수태 (대구대학교 건설시스템공학과) ;
  • 최정일 (전남대학교 바이오하우징연구소) ;
  • 이방연 (전남대학교 건축학부)
  • Received : 2020.03.04
  • Accepted : 2020.03.24
  • Published : 2020.06.30

Abstract

The purpose of this study is to investigate the compressive and tensile properties of high volume slag cement-based fiber-reinforced composite incorporating phase change material. Four mixtures were determined according to calcium hydroxide and expansive admixture, and the compressive strength and tension tests were performed. Test results showed that four mixtures showed a compressive strength over 51MPa and a tensile ductility over 3.2%. It was observed that calcium hydroxide and expansive admixture influenced the compressive and tensile performance, and the strength, ductility, and cracking patterns of composite could be improved by including proper amount of calcium hydroxide and expansive admixture.

이 연구의 목적은 상변화물질을 혼입한 슬래그 다량 치환 시멘트 기반 섬유보강 복합재료의 압축 및 인장성능을 실험적으로 조사하는 것이다. 이를 위하여 활성화제인 수산화칼슘과 팽창제의 양에 따라 4가지 배합을 결정하였고, 밀도, 압축강도 및 인장성능을 평가하였다. 실험결과 4가지 배합 모두 51MPa 이상의 압축강도와 3.2% 이상의 인장연성이 나타났다. 수산화칼슘과 팽창제는 압축 및 인장성능 영향을 미치는 것으로 나타났으며, 적절한 혼합을 통하여 강도, 연성, 균열패턴을 향상시킬 수 있는 것으로 나타났다.

Keywords

References

  1. Choi, J.I., Park, S.E., Cha, S.L., Lee, B.Y. (2019). Effects of type of synthetic fiber on material properties of cementless composite, Journal of the Korea Concrete Institute, 7(3), 255-261 [in Korean].
  2. Choi, J.I., Park, S.E., Lee, B.Y., Kim, Y.Y. (2018). Tensile properties of polyethylene fiber-reinforced highly ductile composite with compressive strength of 100MPa class, Journal of the Korea Concrete Institute, 30(5), 497-503 [in Korean]. https://doi.org/10.4334/jkci.2018.30.5.497
  3. Jeon, J., Lee, J.H., Seo, J., Jeong, S.G., Kim, S. (2013). Application of PCM thermal energy storage system to reduce building energy consumption, Journal of Thermal Analysis and Calorimetry, 111(1), 279-288. https://doi.org/10.1007/s10973-012-2291-9
  4. JSCE. (2008). Recommendations for Design and Construction of High Performance Fiber Reinforced Cement Composites with Multiple Fine Cracks(HPFRCC). Japan: Japan Society of Civil Engineers.
  5. Kwok, A.G., Rajkovich, N.B. (2010). Addressing climate change in comfort standards, Building and Environment, 45(1), 18-22. https://doi.org/10.1016/j.buildenv.2009.02.005
  6. Kwon, S.J., Kang, S.T., Choi, J.I., Lee, B.Y. (2016). Compressive and tensile behavior of polyetylene fiber reinforced composite according to silica sand and fly ash, Journal of the Korean Recycled Construction Resources Institute, 4(1), 25-30 [in Korean]. https://doi.org/10.14190/JRCR.2016.4.1.025
  7. Levermore, G. (2008). A review of the IPCC assessment report four, part 1: the IPCC process and greenhouse gas emission trends from buildings worldwide, Building Services Engineering Research and Technology, 29(4), 349-361 https://doi.org/10.1177/0143624408096263
  8. Marin, P., Saffari, M., de Gracia, A., Zhu, X., Farid, M.M., Cabeza, L.F., Ushak, S. (2016). Energy savings due to the use of PCM for relocatable lightweight buildings passive heating and cooling in different weather conditions, Energy and Buildings, 129, 274-283. https://doi.org/10.1016/j.enbuild.2016.08.007
  9. Pomianowski, M., Heiselberg, P., Zhang, Y. (2013). Review of thermal energy storage technologies based on PCM application in buildings, Energy and Buildings, 67, 56-69. https://doi.org/10.1016/j.enbuild.2013.08.006
  10. Shin, K.J., Lee, S.C., Kim, Y.Y. (2019). High ductile fiber reinforced concrete with micro fibers, Journal of the Korea Institute for Structural Maintenance and Inspection, 23(2), 92-98 [in Korean].
  11. Soares, N., Costa, J.J., Gaspar, A.R., Santos, P. (2013). Review of passive PCM latent heat thermal energy storage systems towards buildings' energy efficiency, Energy and Buildings, 59, 82-103. https://doi.org/10.1016/j.enbuild.2012.12.042
  12. Tyagi, V.V., Buddhi, D. (2007). PCM thermal storage in buildings: a state of art, Renewable and Sustainable Energy Reviews, 11(6), 1146-1166. https://doi.org/10.1016/j.rser.2005.10.002
  13. Zavrl, E., Stritih, U. (2019). Improved thermal energy storage for nearly zero energy buildings with PCM integration, Solar Energy, 190, 420-426. https://doi.org/10.1016/j.solener.2019.08.041