DOI QR코드

DOI QR Code

Occurrence and Chemical Composition of W-Bearing Rutile from the Unsan Au Deposit

운산 금 광상에서 산출되는 함 텅스텐 금홍석의 산상과 화학조성

  • Yoo, Bong Chul (Convergence Research Center for Development of Mineral Resources, Korea Institute of Geoscience and Mineral Resources)
  • 유봉철 (한국지질자원연구원 DMR융합연구단)
  • Received : 2020.05.20
  • Accepted : 2020.07.01
  • Published : 2020.06.30

Abstract

The Unsang gold deposit has been one of the three largest deposits (Daeyudong and Kwangyang) in Korea. The deposit consists of Au-bearing quartz veins filling fractures along fault zones in Precambrian metasedimentary rock and Jurassic Porphyritic granite, which suggests that it might be an orogenic-type. Based on its mineral assemblages and quartz textures, quartz veins are classified into 1)galena-quartz, 2)pyrrhotite-quartz, 3)pyrite-quartz, 4)pegmatic quartz, 5)muscovite-quartz, and 6)simple quartz vein types. The pyrite-quartz vein type we studied shows the following alteration features: sericitization, chloritization, and silicification. The quartz vein contains minerals including white quartz, white mica, chlorite, pyrite, rutile, calcite, monazite, zircon, and apatite. Rutile with euhedral or medium aggregate occur at mafic part from laminated quartz vein. Two types of rutile are distinguishable in BSE image, light rutile is texturally later than dark rutile. Chemical composition of rutile has 89.69~98.71 wt.% (TiO2), 0.25~7.04 wt.% (WO3), 0.30~2.56 wt.% (FeO), 0.00~1.71 wt.% (Nb2O5), 0.17~0.35 wt.% (HfO2), 0.00~0.30 wt.% (V2O3), 0.00~0.35 wt.% (Cr2O3) and 0.04~0.25 wt.% (Al2O3), and light rutile are higher WO3, Nb2O5 and FeO compared to the dark rutile. It indicates that dark rutile and light rutile were formed at different stage. The substitution mechanisms of dark rutile and light rutile are suggested as followed : dark rutile [(V3+, Cr3+) + (Nb5+, Sb5+) ↔ 2Ti4+, 4Cr3+ (or 2W6+) ↔ 3Ti4+ (W6+ ↔ 2Cr3+), V4+ ↔ Ti4+], light rutile [2Fe3+ + W6+ ↔ 3Ti4+, 3Fe2+ + W6+ ↔ Ti4+ + (V3+, Al3+, Cr3+) +Nb5+], respectively. While the dark rutile was formed by cations including V3+, V4+, Cr3+, Nb5+, Sb5+ and W6+ by regional metamorphism of hostrock, the postdating light rutile was formed by redistribution of cations from predating dark rutile and addition of Fe2+ and W6+ from Au-bearing hydrothermal fluid during ductile shear.

운산 금 광상은 한반도의 3대(대유동 광상, 광양 광상) 금 광상중의 하나이었다. 이 광상 주변지질은 선캠브리아기의 변성퇴적암류와 중생대의 반상화강암으로 구성된다. 이 광상은 선캠브리아기의 변성퇴적암류와 중생대의 반상화강암내에 발달된 단층대를 따라 충진한 함 금 석영맥 광상으로 조산형 금 광상에 해당된다. 이 광상의 석영맥은 광물조합에 따라 1)방연석-석영맥형, 2)자류철석-석영맥형, 3)황철석-석영맥형, 4)페크마틱 석영맥형, 5)백운모-석영맥형 및 6)단순석영맥형으로 분류된다. 연구된 석영맥은 황철석-석영맥형이며 견운모화작용, 녹니석화작용 및 규화작용이 관찰된다. 이 석영맥은 백색 석영, 백색 운모, 녹니석, 황철석, 금홍석, 방해석, 모나자이트, 저어콘 및 인회석 등이 산출된다. 금홍석은 엽리상 석영맥내 유색대에서 자형내지 중립질 입단으로 어두운 금홍석과 밝은 금홍석으로 산출된다. 금홍석의 화학조성은 89.69~98.71 wt.% (TiO2), 0.25~7.04 wt.% (WO3), 0.30~2.56 wt.% (FeO), 0.00~1.71 wt.% (Nb2O5), 0.17~0.35 wt.% (HfO2), 0.00~0.30 wt.% (V2O3), 0.00~0.35 wt.% (Cr2O3) 및 0.04~0.25 wt.% (Al2O3)으로 밝은 금홍석이 어두운 금홍석보다 WO3, Nb2O5 및 FeO 원소들의 함량이 높게 산출되며 서로 다른 시기에 형성된 것으로 생각된다. 어두운 금홍석과 밝은 금홍석내 미량원소들은 어두운 금홍석 [(V3+, Cr3+) + (Nb5+, Sb5+) ↔ 2Ti4+, 4Cr3+ (or 2W6+) ↔ 3Ti4+ (W6+ ↔ 2Cr3+), V4+ ↔ Ti4+], 밝은 금홍석 [2Fe3+ + W6+ ↔ 3Ti4+, 3Fe2+ + W6+ ↔ Ti4+ + (V3+, Al3+, Cr3+) +Nb5+]로써 치환관계가 있었다. 이들 자료를 근거로, 어두운 금홍석은 광역변성작용 동안 모암광물들의 변질 시 광물내 존재했던 V3+, V4+, Cr3+, Nb5+, Sb5+, W6+과 같은 양이온들의 재 농집에 의해 형성되었으나 밝은 금홍석은 ductile shear 시 높은 함량의 Fe2+ 및 W6+ 양이온들을 함유한 열수용액의 유입에 따른 어두운 금홍석과 반응에 의해 어두운 금홍석에 존재하였던 V3+, V4+, Al3+, Cr3+ 및 Nb5+과 같은 양이온들의 재 농집에 의해 형성된 것으로 생각된다.

Keywords

References

  1. Agangi, A., Reddy, S.M., Plavsa, D., Fougerouse, D., Clark, C., Roberts, M. and Johnson, T.E., 2019, Antimony in rutile as a pathfinder for orogenic gold deposits. Ore Geology Reviews, 106, 1-11. https://doi.org/10.1016/j.oregeorev.2019.01.018
  2. Belousova, E.A., Griffin, W.L., O'Reilly, S.Y. and Fisher, N.I., 2002, Apatite as an indicator mineral for mineral exploration: trace-element compositions and their relationship to host rock type. Journal of Geochemical Exploration, 76, 45-69. https://doi.org/10.1016/S0375-6742(02)00204-2
  3. Bromiley, G.D. and Hilairet, N., 2005, Hydrogen and minor element incorporation in synthetic rutile. Mineralogical Magazine, 69, 345-358. https://doi.org/10.1180/0026461056930256
  4. Carruzzo, S., Clarke, D.B., Pelrine, K.M. and MacDonald, M.A., 2006, Texture, composition, and origin of rutile in the South Mountain Batholith, Nova Scotia. Canadian Mineralogist, 44, 715-729. https://doi.org/10.2113/gscanmin.44.3.715
  5. Cao, M., Li, G., Qin, K., Seitmuratova, E.Y. and Liu, Y., 2012, Major and trace element characteristics of apatite in granitoids from central Kazakhstan: implications for petrogenesis and mineralisation. Resource Geology, 62, 63-83. https://doi.org/10.1111/j.1751-3928.2011.00180.x
  6. Clark, J.R. and Williams-Jones, A.E., 2004, Rutile as a potential indicator mineral for metamorphosed metallic ore deposits. Rapport Final de DIVEX, Sous-projet SC2, Montreal, Canada. 17p.
  7. Deer, W.A., Howie, R.A. and Zussman, J., 1992, An introduction to the rock-forming minerals. Longman Scientific & Technical, 696p.
  8. Dostal, J., Kontak, D.J. and Chatterjee, A.K., 2009, Trace element geochemistry of scheelite and rutile from metaturbidite-hosted quartz vein gold deposits, Meguma Terrane, Nova Scotia, Canada: genetic implications. Mineralogy and Petrology, 97, 95-109. https://doi.org/10.1007/s00710-009-0067-0
  9. Doyle, M.C., Fletcher, I.R., Foster, J., Large, R.R., Mathur, R., McNaughton, N.J., Meffre, S., Muhling, J.R., Phillips, D. and Rasmussen, B., 2015, Geochronological constraints on the Tropicana gold deposit and Albany-Fraser orogen, Western Australia. Economic Geology, 110, 355-386. https://doi.org/10.2113/econgeo.110.2.355
  10. Foley, S.F., Barth, M.G. and Jenner, G.A., 2000, Rutile/melt partition coefficients for trace elements and an assessment of the influence of rutile on the trace element characteristics of subduction zone magmas. Geochimica et Cosmochimica Acta, 64, 933-938. https://doi.org/10.1016/S0016-7037(99)00355-5
  11. Goldfarb, R.J., Taylor, R.D., Collins, G.S., Goryachev, N.A. and Orlandini, O.F., 2014, Phanerozoic continental growth and gold metallogeny of Asia. Gondwana Research, 25, 48-102. https://doi.org/10.1016/j.gr.2013.03.002
  12. Graham, J. and Morris, R.C., 1973, Tungsten- and antimony-substituted rutile. Mineralogical Magazine, 39, 470-473. https://doi.org/10.1180/minmag.1973.039.304.11
  13. Hassan, W.F., 1994, Geochemistry and mineralogy of Ta-Nb rutile from Peninsular Malaysia. Journal of Southeast Asian Earth Sciences, 10, 11-23. https://doi.org/10.1016/0743-9547(94)90005-1
  14. Hori, S., 1942, Geology and ore deposits of the eastern Unsan mining district, Korea. The Journal of the Geological Society of Japan, 49, 1-29. https://doi.org/10.5575/geosoc.49.1
  15. Ishihara, S., Jin, M.S. and Sasaki, A., 2000, Source diversity of ore sulfur from Mesozoic-Cenozoic mineral deposits in the Korean Peninsula region. Resource Geology, 50, 203-212. https://doi.org/10.1111/j.1751-3928.2000.tb00070.x
  16. Kinosaki, Y., 1933, Geological Atlas of Chosen, No. 15:Hokuchin and Gyukenchin Sheets, 25p.
  17. Lee, K.H., Lee, J.I., Yu, C.C., Jung, K.R., Cho, D.H., Lee, K.K., Kwon, H.H. and Cho, W.J., 2012, Korea Mining Centennial History. Korea Mining Association, 840p.
  18. Koh, S.M., Lee, G.J., You, B.W., Kim, N.H. and Lee, B.H., 2019, Geology and mineralization of the Northern Korean Peninsula. Korea Institute of Geoscience and Mineral Resources, 322p.
  19. Luvizotto, G.L., Zack, T., Meyer, H.P., Ludwig, T., Triebold, S., Kronz, A., Munker, C., Stockli, D.F., Prowatke, S., Klemme, S., Jacob, D.E. and von Eynatten, H., 2009, Rutile crystals as potential trace element and isotope mineral standards for microanalysis. Chemical Geology, 261, 346-369. https://doi.org/10.1016/j.chemgeo.2008.04.012
  20. Mao, M., Rukhlov, A.S., Rowins, S.M., Spence, J. and Coogan, L.A., 2016, Apatite trace element compositions: a robust new tool for mineral exploration. Economic Geology, 111, 1187-1222. https://doi.org/10.2113/econgeo.111.5.1187
  21. MacChesney, J.N. and Muan, A., 1959, Studies in the system iron oxide-titanium oxide. American Mineralogist, 44, 926-945.
  22. Meinhold, G., 2010, Rutile and its applications in earth sciences. Earth-Science Reviews, 102, 1-28. https://doi.org/10.1016/j.earscirev.2010.06.001
  23. Meinhold, G., Anders, B., Kostopoulos, D. and Reischmann, T., 2008, Rutile chemistry and thermometry as provenance indicator: an example from Chios Island, Greece. Sedimentary Geology, 203, 98-111. https://doi.org/10.1016/j.sedgeo.2007.11.004
  24. Mclnnes, B., Brown, A., Evans, N., McNaughton, N., Liffers, M. and Wingate, M., 2015, Integration of electron, laser and ion microprobe techniques to create an open source digital mineral library of Western Australia. Goldschmidt2015, Session 12a/3016.
  25. Murad, E., Cashion, J.D., Noble, C.J. and Pilbrow, J.R., 1995, The chemical state of Fe in rutile from an albitite in Norway. Mineralogical Magazine, 59, 557-560. https://doi.org/10.1180/minmag.1995.059.396.17
  26. Plavsa, D., Reddy, S.M., Agangi, A., Clark, C., Kylander-Clark, A. and Tiddy, C.J., 2018, Microstructural, trace element and geochronological characterization of $TiO_2$ polymorphs and implications for mineral exploration. Chemical Geology, 476, 130-149. https://doi.org/10.1016/j.chemgeo.2017.11.011
  27. Porter, J.K., McNaughton, N.J., Evans, N.J. and McDonald, B.J., 2020, Rutile as a pathfinder for metals exploration. Ore Geology Reviews, 120, 103406. https://doi.org/10.1016/j.oregeorev.2020.103406
  28. Rabbia, O.M., Hernandez, L.B., French, D.H., King, R.W. and Ayers, J.C., 2009, The El Teniente porphry Cu-Mo deposi from a hydrothermal rutile perspective. Mineralium Deposita, 44, 849-866. https://doi.org/10.1007/s00126-009-0252-4
  29. Rice, C., Darke, K. and Still, J., 1998, Tungsten-bearing rutile from the Kori Kollo gold mine Bolivia. Mineralogical Magazine, 62, 421-429. https://doi.org/10.1180/002646198547684
  30. Rudnick, R.L., Barth, M., Horn, I. and McDonough, W.F., 2000, Rutile-bearing refractory eclogites: missing link between continents and depleted mantle. Science, 287, 278-281. https://doi.org/10.1126/science.287.5451.278
  31. Scott, K.M., 1988, Phyllosilicate and rutile compositions as indicators of Sn specialization in some southeastern Australian granites. Mineralium Deposita, 23, 159-165. https://doi.org/10.1007/BF00204294
  32. Scott, K.M., 2005, Rutile geochemistry as a guide to porphyry Cu-Au mineralization, Northparkes, New South Wales, Australia. Geochemistry: Exploration, Environment, Analysis, 5, 247-253. https://doi.org/10.1144/1467-7873/03-055
  33. Scott, K.M. and Radford, N.W., 2007, Rutile compositions at the Bg Bell Au deposit as a guide for exploration. Geochemistry: Exploration, Environment, Analysis, 7, 353-361. https://doi.org/10.1144/1467-7873/07-135
  34. Scott, K.M., Radford, N.W., Hough, R.M. and Reddy, S.M., 2011, Rutile compositions in the Kalgoorlie Goldfields and their implications for exploration. Australian Journal of Earth Sciences, 58, 803-812. https://doi.org/10.1080/08120099.2011.600334
  35. Shikazono, N. and Shimizu, M., 1986, Compositional variations in Au-Ag series minerals from some gold deposits in the Korean Peninsula. Mining Geology, 36, 545-553.
  36. Shunso, I., 2006, North Korea, a country of gold? Gold mineralizations in the Korean Peninsular and their basement setting. Chishitsu News, 617, 8-23.
  37. Smith, D. and Perseil, E.-A., 1997, Sb-rich rutile in the manganese concentrations at St.Marcel-Praborna, Aosta Valley, Italy; petrology and crystal-chemistry. Mineralogical Magazine, 61, 655-669. https://doi.org/10.1180/minmag.1997.061.408.04
  38. Takashima, K. and Kishimoto, F., 1987, Gold deposits of Unsan and its vicinity - A sketch of the Democratic People's Republic of Korea. Chishitsu News, 398, 28-41 (in Japanese).
  39. Tomkins, H.S., Powell, R. and Ellis, D.J., 2007, The pressure dependence of the zirconium-inrutile thermometer. Journal of Metamorphic Geology, 25, 703-713. https://doi.org/10.1111/j.1525-1314.2007.00724.x
  40. Triebold, S., von Eynatten, H., Luvizotto, G.L. and Zack, T., 2007, Deducing source rock lithology from detrital rutile geochemistry: an example from the Erzgebirge, Germany. Chemical Geology, 244, 421-436. https://doi.org/10.1016/j.chemgeo.2007.06.033
  41. Urban, A.J., Hoskins, B.F. and Grey, I.E., 1992, Characterization of V-Sb-W-bearing rutile from the Hemlo gold deposit, Ontario. Canadian Mineralogist, 30, 319-326.
  42. Watson, E.B., Wark, D.A. and Thomas, J.B., 2006, Crystallization thermometers for zircon and rutile. Contributions to Mineralogy and Petrology, 151, 413-433. https://doi.org/10.1007/s00410-006-0068-5
  43. Wikipedia (http://ko.wikioedia.org/wiki/unsan mine)
  44. Williams, S.A. and Cesbron, F.P., 1977, Rutile and apatite:useful prospecting guides for porphyry copper deposits. Mineralogical Magazine, 41, 288-292. https://doi.org/10.1180/minmag.1977.041.318.18
  45. Zack, T., Kronz, A., Foley, S.F. and Rivers, T., 2002, Trace element abundances in rutiles from eclogites and associated garnet mica schists. Chemical Geology, 184, 97-122. https://doi.org/10.1016/S0009-2541(01)00357-6
  46. Zack, T., Moraes, R. and Kronz, A., 2004a, Temperature dependence of Zr in rutile: empirical calibration of a rutile thermometer. Contributions to Mineralogy and Petrology, 148, 471-488. https://doi.org/10.1007/s00410-004-0617-8
  47. Zack, T., von Eynatten, H. and Kronz, A., 2004b, Rutile geochemistry and its potential use in quantitative provenance studies. Sedimentary Geology, 171, 37-58. https://doi.org/10.1016/j.sedgeo.2004.05.009