DOI QR코드

DOI QR Code

Fast and Soft Functionalization of Carbon Nanotube with -SO3H, -COOH, -OH Groups for Catalytic Hydrolysis of Cellulose to Glucose

  • Lusha, Qin (School of Materials Science and Engineering, Pusan National University) ;
  • Lee, Sungho (School of Materials Science and Engineering, Pusan National University) ;
  • Li, Oi Lun (School of Materials Science and Engineering, Pusan National University)
  • Received : 2020.05.07
  • Accepted : 2020.06.18
  • Published : 2020.06.30

Abstract

Herein, sulfonated carbon nanotubes (CNT) have been prepared in dilute sulfuric acid (H2SO4) via a novel sulfonation approach based on gas-liquid interfacial plasma (GLIP) at room temperature. The sulfonic acid groups and total acid groups densities of CNT after GLIP treatment in 2 M H2SO4 for 45 min can reach to 0.53 mmol/g and 3.64 mmol/g, which is higher than that of sulfonated CNT prepared under 0.5 M / 1 M H2SO4. The plasma sulfonated CNT has been applied as catalysts for the conversion of microcrystalline cellulose to glucose. The effect of hydrolysis temperature and hydrolysis time on the conversion rate and product distribution have been discussed. It demonstrates that the total conversion rate of cellulose increasing with hydrolysis temperature and hydrolysis time. Furthermore, the GLIP sulfonated CNT prepared in 2 M H2SO4 for 45 min has shown high catalytic stability of 85.73 % after three cycle use.

Keywords

References

  1. S.-Y. Chiu, C.-Y. Kao, T.-Y. Chen, Y.-B. Chang, C.-M. Kuo, C.-S. Lin, Cultivation of microalgal Chlorella for biomass and lipid production using wastewater as nutrient resource, Bioresour. Technol., 184 (2015) 179-189. https://doi.org/10.1016/j.biortech.2014.11.080
  2. A. Demirbas, Biomass resource facilities and biomass conversion processing for fuels and chemicals, Energy Convers. Manag., 42 (2001) 1357-1378. https://doi.org/10.1016/S0196-8904(00)00137-0
  3. K. Das, D. Ray, N. R. Bandyopadhyay, S. Sengupta, Study of the Properties of Microcrystalline Cellulose Particles from Different Renewable Resources by XRD, FTIR, Nanoindentation, TGA and SEM, J. Polym. Environ., 18 (2010) 355-363. https://doi.org/10.1007/s10924-010-0167-2
  4. S.-Y. Oh, D.-I. Yoo, Y. Shin, H.-C. Kim, H.-Y. Kim, Y.-S. Chung, W.-H. Park, J.-H. Youk, Crystalline structure analysis of cellulose treated with sodium hydroxide and carbon dioxide by means of X-ray diffraction and FTIR spectroscopy, Carbohydr. Res., 340 (2005) 2376-2391. https://doi.org/10.1016/j.carres.2005.08.007
  5. C. Li, Z. K. Zhao. Efficient Acid-Catalyzed Hydrolysis of Cellulose in Ionic Liquid, Adv. Synth. Catal. 349 (2007) 1847-1850. https://doi.org/10.1002/adsc.200700259
  6. A. Orozco, M. Ahmad, D. Rooney, G. Walker, Dilute Acid Hydrolysis of Cellulose and Cellulosic Bio-Waste Using a Microwave Reactor System, Process. Saf. Environ., 85 (2007) 446-449. https://doi.org/10.1205/psep07003
  7. D. Lai, L. Deng, J. Li, B. Liao, Q. Guo, Y. Fu, Hydrolysis of Cellulose into Glucose by Magnetic Solid Acid, ChemSusChem 4 (2011) 55-58. https://doi.org/10.1002/cssc.201000300
  8. L. Hu, L. Lin, Z. Wu, S. Zhou, S. Liu, Chemocatalytic hydrolysis of cellulose into glucose over solid acid catalysts, Appl. Catal. B: Environ., 174 (2015) 225-243. https://doi.org/10.1016/j.apcatb.2015.03.003
  9. H. Kobayashi, T. Komanoya, K. Hara, A. Fukuoka, Water-Tolerant Mesoporous-Carbon-Supported Ruthenium Catalysts for the Hydrolysis of Cellulose to Glucose, ChemSusChem 3 (2010) 440-443. https://doi.org/10.1002/cssc.200900296
  10. S. V. de Vyver, L. Peng, J. Geboers, H. Schepers, F. Clippel, C. J. Gommes, B. Goderis, P. A. Jacobs, B. F. Sels, Sulfonated silica/carbon nanocomposites as novel catalysts for hydrolysis of cellulose to glucose, Green Chem., 12 (2010) 1560-1563. https://doi.org/10.1039/c0gc00235f
  11. Y. Kato, Y. Sekine, One Pot Direct Catalytic Conversion of Cellulose to Hydrocarbon by Decarbonation Using Pt/H-beta Zeolite Catalyst at Low Temperature, Catal Lett., 143 (2013) 418-423. https://doi.org/10.1007/s10562-013-0992-8
  12. J. Li, Helena S. M. P. Soares, Jacob A. Moulijn and M. Makkee, Simultaneous hydrolysis and hydrogenation of cellobiose to sorbitol in molten salt hydrate media, Catal. Sci. Technol., 3 (2013) 1565-1572. https://doi.org/10.1039/c3cy20808g
  13. P. Wolf, C. Hammond, S. Conrad. I. Hermans, Post-synthetic preparation of Sn-, Ti- and Zr-beta: a facile route to water tolerant, highly active Lewis acidic zeolites, Dalton Trans., 43 (2014) 4514-4519. https://doi.org/10.1039/c3dt52972j
  14. J. Pang, A. Wang, M. Zheng, Y. Zhang, Y. Huang, X. Chen. T. Zhang, Catalytic conversion of cellulose to hexitols with mesoporous carbon supported Ni-based bimetallic catalysts, Green Chem., 14 (2012) 614-617. https://doi.org/10.1039/c2gc16364k
  15. R. J. Chimentao, E. Lorente, F. Gispert-Guirado, F. Medina, F. Lopez, Hydrolysis of dilute acid-pretreated cellulose under mild hydrothermal conditions, Carbohydr. Polym., 111 (2014) 116-124. https://doi.org/10.1016/j.carbpol.2014.04.001
  16. Z. Sun, M. Tao, Q. Zhao, H. Guang, T. Shi, X. Wang, A highly active willow-derived sulfonated carbon material with macroporous structure for production of glucose. Cellulose., 22 (2015) 675-682. https://doi.org/10.1007/s10570-014-0540-8
  17. S. Hu, T. J. Smith, W. Lou, M. Zong, Efficient Hydrolysis of Cellulose over a Novel Sucralose-Derived Solid Acid with Cellulose-Binding and Catalytic Sites, Agric. Food Chem., 62 (2014) 1905-1911. https://doi.org/10.1021/jf405712b
  18. B. Zhang, J. Ren, X. Liu, Y. Guo, Y. Guo, G. Lu, Y. Wang, Novel sulfonated carbonaceous materials from p-toluenesulfonic acid/glucose as a high-performance solid-acid catalyst, Catal. Commun., 11 (2010) 629-632. https://doi.org/10.1016/j.catcom.2010.01.010
  19. L. J. Konwar, R. Das, A. J. Thakur, E. Salminen, P. Maki-Arvela, N. Kumar, J. Mik kola, D. Deka, Biodiesel production from acid oils using sulfonated carbon catalyst derived from oil-cake waste, Journal of Mol. Catal. A: Chem., 388 (2014) 167-176.
  20. M. Tao, H. Guan, X. Wang, Y. Liu, R. Louh, Fabrication of sulfonated carbon catalyst from biomass waste and its use for glycerol esterification, Fuel Process. Technol., 138 (2015) 355-360. https://doi.org/10.1016/j.fuproc.2015.06.021
  21. A. M. Dehkhoda, A. H. West, N. Ellis, Biochar based solid acid catalyst for biodiesel production, Appl. Catal. A: Gen., l. 382 (2010) 197-204. https://doi.org/10.1016/j.apcata.2010.04.051
  22. X. Mo, D. E. Lopez, K. Suwannakarn, Y. Liu, E. Lotero, J. G. Goodwin Jr, C. Lu, Activation and deactivation characteristics of sulfonated carbon catalysts, J. Catal., 254 (2008) 332-338. https://doi.org/10.1016/j.jcat.2008.01.011
  23. O. Li, R. Ikura, T. Ishizaki, Hydrolysis of cellulose to glucose over carbon catalysts sulfonated via a plasma process in dilute acids, Green Chem. 19 (2017) 4774-4777. https://doi.org/10.1039/C7GC02143G
  24. O. Li, L. Qin, N. Takeuchi, K. Kim, T. Ishizaki, Effect of hydrophilic/hydrophobic properties of carbon materials on plasma-sulfonation process and their catalytic activities in cellulose conversion, Catal. Today. 337 (2019) 155-161. https://doi.org/10.1016/j.cattod.2019.04.025
  25. Y. Bai, L. Xiao, R. Sun, Efficient hydrolyzation of cellulose in ionic liquid by novel sulfonated biomass-based catalysts, Cellulose 21 (2014) 2327-2336. https://doi.org/10.1007/s10570-014-0287-2
  26. S. Dora, T. Bhaskar, R. Singh, D. V. Naik, D. K. Adhikari, Effective catalytic conversion of cellulose into high yields of methyl glucosides over sulfonated carbon based catalyst, Bioresour technol. 120 (2012) 318-321. https://doi.org/10.1016/j.biortech.2012.06.036