DOI QR코드

DOI QR Code

기선 거리에 따른 이동체의 N-RTK 위치정확도 평가

Evaluation of N-RTK Positioning Accuracy for Moving Platform

  • Kim, Min-Seo (Dept. of Geoinformation Engineering, Sejong University) ;
  • Bae, Tae-Suk (Dept. of Geoinformation Engineering, Sejong University)
  • 투고 : 2020.05.25
  • 심사 : 2020.06.26
  • 발행 : 2020.06.30

초록

실시간 정밀 위치결정을 위해서 N-RTK (Network Real-Time Kinematic) 기술이 많이 사용되고 있다. 하지만 기존의 N-RTK 시스템은 사용자 수 제한으로 인해 지속해서 늘어나는 무인 이동체의 위치결정을 하는 데 한계가 있다. 따라서 사용자 수 제한 없이 보정 신호를 생성하는 시스템이 있다면 어느 정도의 간격으로 있어야 전국어디에서든 위치결정을 할 수 있을지에 대한 연구가 필요할 것으로 판단하여 기선 거리에 따른 N-RTK 시스템의 정확도를 분석하였다. 다양한 장비를 사용하는 사용자들이 있을 것으로 예상하여 서로 다른 성능의 수신기로 로버 위치를 추정하였으며, 자료처리는 오픈소스 소프트웨어인 RTKLIB을 활용하였다. 실험 결과, 로버와 가장 가까운 기준국에서는 수신기의 종류와 관계없이 높은 비율로 고정해가 산출되었으며, 추정 좌표의 정확도 역시 비슷한 수준으로 결정되었다. 로버에서 약 40km 떨어져 있는 기준국 보정 신호를 활용하는 경우, 고정해 산출 비율은 평균 약 50% 정도 감소하였으나 수직 RMSE (Root Mean Squared Error)는 약 2.5-4.7cm로 단기선 결과(1.0-1.5cm)와 크게 다르지 않았다. 고가형 수신기는 장기선에서도 이상값(outlier) 크게 나타나지 않았으며, 향후 과학기술용 정밀 자료 처리 소프트웨어를 활용한 고정해 산출과 좌표 추정 정확도에 대한 분석을 수행할 예정이다.

For real-time precise positioning, N-RTK (Network Real-Time Kinematic) technology is widely used these days. However, the currently operating N-RTK system has a limitation in terms of the number of users. Therefore, if reference points generate correction messages with no limit on the number of users are developed later, it is determined that an appropriate reference point installation interval is required, so that the accuracy of the N-RTK system according to the baseline distance was analyzed. This experiment utilized receivers with varying performance that estimated the rover position, and RTKLIB, an open-source software, is used for processing data. As a result, the rover position was estimated accurately with a high rate of fixed ambiguity for all the receivers. When the reference station with a baseline length of 40 km was used, the vertical RMSE (Root Mean Squared Error) was quite similar to the short baseline case, but only half of the ambiguity fixing rate was achieved. The outlier in the estimated rover position was not observed for the longer baselines in the case of a high-end receiver. It is necessary to analyze the ambiguity fixing and the accuracy of the kinematic positioning with scientific GNSS processing software.

키워드

참고문헌

  1. Bae, T.S. and Kim, M.H. (2018), Performance analysis of network-RTK techniques for drone navigation considering ionospheric conditions, Journal of Sensors, Vol. 2018, pp. 1-8.
  2. Choi, Y.S., Lee, Y.C., Kwon, J.H., and Lee, J.O. (2004), A study on the introduction of GPS virtual reference system in South Korea, Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography, Vol. 22, No. 2, pp. 105-116.
  3. Dach, R., Lutz, S., Walser, P., and Fridez, P. (2015), Bernese GNSS Software Version 5.2, Astronomical Institute, University of Bern.
  4. Gumilar, I., Bramanto, B., Rahman, F., and Hermawan, I. (2019), Variability and performance of short to long-range single baseline RTK GNSS positioning in Indonesia, E3S Web of Conferences (ISGNSS 2018), Vol. 94, pp. 1-5.
  5. Hofmann-Wellenhof, B., Lichtenegger, H., and Collins, J. (2001), Global Positioning System: Theory and Practice (5th), Springer-Verlag Wien.
  6. NGII (2019), A Basic Study on the Introduction of New GNSS Correction Signals with the Development of Real-Time Positioning Technology, No.11-1613436-000204-01, Korean Society of Surveying, Geodesy, Photogrammetry and Cartography.
  7. NGII (2020), Service of satellite reference points, National Geographic Information Institute, http://map.ngii.go.kr/ms/mesrInfo/gnss/vrsUserView.do (last date accessed: 29 April 2020).
  8. No, S.J., Han, J.H., and Kwon, J.H. (2012), Accuracy analysis of network-RTK(VRS) for real time kinematic positioning, Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography, Vol. 30, No. 4, pp. 389-396. https://doi.org/10.7848/ksgpc.2012.30.4.389
  9. NSTC (2016), Five-year Plan for the Development of Unmanned Mobile Devices, National Science and Technology Council, Ministry of Science, ICT & Future Planning.
  10. Park, B.W., Kim, J.H., Kee, C.D., Cleveland, A., Parsons, M., Wolfe, D., and Kalafus, R. (2006), RRC unnecessary for DGPS messages, IEEE Transactions on Aerospace and Electronic Systems, Vol. 42, No. 3, pp. 1149-1160. https://doi.org/10.1109/TAES.2006.248220
  11. RTCM (2011), Radio technical commission for maritime servers, RTCM Special Committee No. 104, RTCM Standard 10403.1, July, Arlington, VA, USA, pp. 3:78-3:83.
  12. Schmitz, M., Wubbena, G., Wubbena, J., and Wubbena, T. (2017), SSR technology for scalable real-time GNSS applications, Treasure Summer School, 11-15 September, Northingham, UK.
  13. Tae, H.U., Park, K.D., and Kim, M.S. (2015), Analysis of integrated GPS/GLONASS/BDS positioning accuracy using low cost receiver, Journal of the Korean Society for Geospatial Information Science, Vol. 23, No. 4, pp. 49-55.
  14. Takac, F. and Zelzer, O. (2008), The relationship between network RTK solutions MAC, VRS, PRS, FKP and i-MAX, Proceedings of the 21st International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GNSS 2008), 16-19 September, Savannah, GA, USA, pp. 348-355.
  15. Talbot, N., Lu, G., Allison, T., and Vollath, U. (2002), Broadcast network RTK-transmission standards and results, Proceedings of the 15th International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GPS 2002), 24-27 September, Portland, OR, USA, pp. 2379-2387.
  16. Woon, B.Y., Lee, D.J., and Lee, S.S. (2017), Network-RTK GNSS for land vehicle navigation application, The Journal of Korean Institute of Communications and Information Sciences, Vol. 42, No. 02, pp. 424-431. https://doi.org/10.7840/kics.2017.42.2.424

피인용 문헌

  1. Performance Evaluation of the Low-cost, High-precision RTK Device RTAP2U for GPS-based Precise Localization vol.10, pp.1, 2020, https://doi.org/10.11003/jpnt.2021.10.1.67