DOI QR코드

DOI QR Code

8가지 블록/키 크기를 지원하는 SPECK 암호 코어

A SPECK Crypto-Core Supporting Eight Block/Key Sizes

  • Yang, Hyeon-Jun (School of Electronic Engineering, Kumoh National Institute of Technology) ;
  • Shin, Kyung-Wook (School of Electronic Engineering, Kumoh National Institute of Technology)
  • 투고 : 2020.05.29
  • 심사 : 2020.06.17
  • 발행 : 2020.06.30

초록

IoT, 무선 센서 네트워크와 같이 제한된 자원을 갖는 응용분야의 보안에 적합하도록 개발된 경량 블록 암호 알고리듬 SPECK의 하드웨어 구현에 관해 기술한다. 블록 암호 SPECK 크립토 코어는 8가지의 블록/키 크기를 지원하며, 회로 경량화를 위해 내부 데이터 패스는 16-비트로 설계되었다. 키 초기화 과정을 통해 복호화에 사용될 최종 라운드 키가 미리 생성되어 초기 키와 함께 저장되며, 이를 통해 연속 블록에 대한 암호화/복호화 처리가 가능하도록 하였다. 또한 처리율을 높이기 위해 라운드 연산과 키 스케줄링이 독립적으로 연산되도록 설계하였다. 설계된 SPECK 크립토 코어를 FPGA 검증을 통해 하드웨어 동작을 확인하였으며, Virtex-5 FPGA 디바이스에서 1,503 슬라이스로 구현되었고, 최대 동작 주파수는 98 MHz로 추정되었다. 180 nm 공정으로 합성하는 경우, 최대 동작 주파수는 163 MHz로 추정되었으며, 블록/키 크기에 따라 154 Mbps ~ 238 Mbps의 처리량을 갖는다.

This paper describes the hardware implementation of SPECK, a lightweight block cipher algorithm developed for the security of applications with limited resources such as IoT and wireless sensor networks. The block cipher SPECK crypto-core supports 8 block/key sizes, and the internal data-path was designed with 16-bit for small gate counts. The final round key to be used for decryption is pre-generated through the key initialization process and stored with the initial key, enabling the encryption/decryption for consecutive blocks. It was also designed to process round operations and key scheduling independently to increase throughput. The hardware operation of the SPECK crypto-core was validated through FPGA verification, and it was implemented with 1,503 slices on the Virtex-5 FPGA device, and the maximum operating frequency was estimated to be 98 MHz. When it was synthesized with a 180 nm process, the maximum operating frequency was estimated to be 163 MHz, and the estimated throughput was in the range of 154 ~ 238 Mbps depending on the block/key sizes.

키워드

참고문헌

  1. M. Ammar, G. Russello, and B. Crispo, "Internet of Things: A survey on the security of IoT frameworks," Journal of Information Security and Applications, vol.38, pp.8-27, 2018. DOI: 10.1016/j.jisa.2017.11.002
  2. Q. Jing, A.V. Vasilakos, J. Wan, J. Lu, and D. Qiu, "Security of the Internet of Things: perspectives and challenges," Wireless Netw 20, pp.2481-2501, 2014. DOI: 10.1007/s11276-014-0761-7
  3. NIST Std. FIPS-197, Advanced Encryption Standard, National Institute of Standard and Technology (NIST), 2001.
  4. KS X 1213, 128 bit Block Encryption Algorithm ARIA, Korean Agency for Technology and Standards, 2004.
  5. B. J. Mohd and T. Hayajneh, "Lightweight Block Ciphers for IoT: Energy Optimization and Survivability Techniques," IEEE Access, vol.6, pp.35966-35978, 2018. DOI: 10.1109/ACCESS.2018.2848586
  6. T. Eisenbarth, S. Kumar, C. Paar, A. Poschmann, and L. Uhsadel, "A Survey of Lightweight-Cryptography Implementations," IEEE Design & Test of Computers, vol.24, no.6, pp.522-533, 2007. DOI: 10.1109/MDT.2007.178
  7. T. Suzaki, K. Minematsu, S. Morioka, and E. Kobayashi, "Twine: A lightweight, versatile block cipher," ECRYPT Workshop on Lightweight Cryptography, pp.146-169, 2011.
  8. D. Hong, J. Sung, S. Hong, J. Lim, S. Lee, B. Koo, C. Lee, D. Chang, J. Lee, K. Jeong, H. Kim, J. Kim, and S. Chee., "HIGHT: A new block cipher suitable for low-resource device," Cryptographic Hardware and Embedded Systems-CHES 2006, vol.4249 of LNCS, pp.46-59, 2006. DOI: 10.1007/978-3-540-74735-2_31
  9. A. Bogdanov, L. R. Knudsen, G. Leander, C. Paar, A. Poschmann, M. J. B. Robshaw, Y. Seurin, and C. Vikkelsoe, "PRESENT: An ultra-lightweight block cipher," Cryptographic Hardware and Embedded Systems-CHES 2007, vol. 4727 of LNCS, pp.450-466, 2007. DOI: 10.1007/978-3-540-74735-2_31
  10. K. Shibutani, T. Isobe, H. Hiwatari, A. Mitsuda, T. Akishita, and T. Shirai, "Piccolo: an ultralightweight block cipher," Cryptographic Hardware and Embedded Systems-CHES 2011, vol, 6917 of LNCS, pp 342-357, 2011. DOI: 10.1007/978-3-642-23951-9_23
  11. R. Beaulieu, D. Shors, J. Smith, S. Treatman-Clark, B. Weeks, and L. Wingers, "The SIMON and SPECK Families of Lightweight Block Ciphers," Cryptology ePrint Archive, Report 2013/404, 2013. DOI: https://eprint.iacr.org/2013/404
  12. R. Beaulieu, S. Treatman-Clark, D. Shors, B. Weeks, J. Smith, and L. Wingers, "The SIMON and SPECK lightweight block ciphers," 2015 52nd ACM/ EDAC/IEEE Design Automation Conference (DAC), pp.1-6, 2015.