DOI QR코드

DOI QR Code

Butyrylcholinesterase Inhibitory Activity and GC-MS Analysis of Carica papaya Leaves

  • Khaw, Kooi-Yeong (Biofunctional Molecule Exploratory Research Group (BMEX), School of Pharmacy, Monash University Malaysia) ;
  • Chear, Nelson Jeng Yeou (Centre for Drug Research, Universiti Sains Malaysia) ;
  • Maran, Sathiya (School of Pharmacy, Monash University Malaysia) ;
  • Yeong, Keng Yoon (School of Science, Monash University Malaysia) ;
  • Ong, Yong Sze (Biofunctional Molecule Exploratory Research Group (BMEX), School of Pharmacy, Monash University Malaysia) ;
  • Goh, Bey Hing (College of Pharmaceutical Sciences, Zhejiang University)
  • Received : 2020.04.20
  • Accepted : 2020.06.22
  • Published : 2020.06.30

Abstract

Carica papaya is a medicinal and fruit plant owing biological activities including antioxidant, antiviral, antibacterial and anticancer. The present study aims to investigate the acetyl (AChE) and butyryl (BChE) cholinesterase inhibitory potentials of C. papaya extracts as well as their chemical compositions. The chemical composition of the active extract was identified using a gas chromatography-mass spectrometry (GC-MS). Ellman enzyme inhibition assay showed that the alkaloid-enriched leaf extract of C. papaya possessed significant anti-BChE activity with an enzyme inhibition of 75.9%. GC-MS analysis showed that the alkaloid extract composed mainly the carpaine (64.9%) - a major papaya alkaloid, and some minor constituents such as aliphatic hydrocarbons, terpenes and phenolics. Molecular docking of carpaine revealed that this molecule formed hydrogen bond and hydrophobic interactions with choline binding site and acyl pocket. This study provides some preliminary findings on the potential use of C. papaya leaf as an herbal supplement for the prevention and treatment of Alzheimer's disease.

Keywords

References

  1. Alzheimer's Association. Alzheimers. Dement. 2017, 13, 325-373. https://doi.org/10.1016/j.jalz.2017.02.001
  2. Murray, A. P.; Faraoni, M. B.; Castro, M. J.; Alza, N. P.; Cavallaro, V. Curr. Neuropharmacol. 2013, 11, 388-413. https://doi.org/10.2174/1570159X11311040004
  3. Racchi, M.; Mazzucchelli, M.; Porrello, E., Lanni, C.; Govoni. S. Pharmacol. Res. 2004, 50, 441-451. https://doi.org/10.1016/j.phrs.2003.12.027
  4. Blanco-Silvente, L.; Castells, X.; Saez, M.; Barcelo, M. A.; Garre-Olmo, J.; Vilalta-Franch, J.; Capella, D. Int. J. Neuropsychopharmacol. 2017, 20, 519-528. https://doi.org/10.1093/ijnp/pyx012
  5. Darvesh, S.; Hopkins, D. A.; Geula, C. Nat. Rev. Neurosci. 2003, 4, 131-138. https://doi.org/10.1038/nrn1035
  6. Greig, N. H.; Sambamurti, K.; Yu, Q. S.; Perry, T. A.; Holloway, H. W.; Haberman, F .; Brossi, A .; Ingram, D. K .; Lahiri, D. K. Butyrylcholinesterase: its selective inhibition and relevance to Alzheimer's disease; Butyrylcholinesterase: Its Function and Inhibition; Giacobini, E. Ed; Martin Dunitz Ltd; London, 2003, pp 69-90.
  7. Chopra, K.; Misra, S.; Kuhad, A. Expert Opin. Pharmacother. 2011, 12, 335-350. https://doi.org/10.1517/14656566.2011.520702
  8. Huang, L.; Su, T.; Li, X. Curr. Top. Med. Chem. 2013, 13, 1864-1878. https://doi.org/10.2174/15680266113139990142
  9. Sekeli, R.; Hamid, M. H.; Razak, R. A.; Wee, C. Y.; Ong-Abdullah, J. Front. Plant Sci. 2018, 9, 1380. https://doi.org/10.3389/fpls.2018.01380
  10. Arumuganathan, K.; Earle, E. Plant Mol. Bio. Rep. 1991, 9, 208-218. https://doi.org/10.1007/BF02672069
  11. Owoyele, B. V.; Adebukola, O. M.; Funmilayo, A. A.; Soladoye, A. O. Inflammopharmacology 2008, 16, 168-173. https://doi.org/10.1007/s10787-008-7008-0
  12. Khaw, K. Y.; Parat, M. O.; Shaw, P. N.; Nguyen, T. T. T.; Pandey, S.; Thurecht, K. J.; Falconer, J. R. Sci. Rep. 2019, 9, 1716. https://doi.org/10.1038/s41598-018-37171-9
  13. Khaw, K. Y.; Shaw, P. N.; Parat, M. O.; Pandey, S.; Falconer, J. R. Processes 2020, 8, 610. https://doi.org/10.3390/pr8050610
  14. Gurung, S.; Skalko-Basnet, N. J. Ethnopharmacol. 2009, 121, 338-341. https://doi.org/10.1016/j.jep.2008.10.030
  15. Otsuki, N.; Dang, N. H.; Kumagai, E.; Kondo, A.; Iwata, S.; Morimoto, C. J. Ethnopharmacol. 2010, 127, 760-767. https://doi.org/10.1016/j.jep.2009.11.024
  16. Imaga, N. A.; Gbenle, G. O.; Okochi, V. I.; Adenekan. S. O.; Duro-Emmanuel. T.; Oyeniyi, B.; Dokai, P. N.; Oyenuga, M.; Otumara, M.; Ekeh, F. C. Sci. Res. Essays 2010, 5, 2201-2205.
  17. Halim, S.; Abdullah, N. R.; Afzan, A.; Abdul Rashid, B. A.; Jantan, I.; Ismail, Z. J. Med. Plants Res. 2011, 5, 1867-1872.
  18. Vij, T.; Prashar, Y. Asian Pac. J. Trop. Dis. 2015, 5, 1-6. https://doi.org/10.1016/S2222-1808(14)60617-4
  19. Jamila, N.; Yeong, K. K.; Murugaiyah, V.; Atlas, A.; Khan, I.; Khan, N.; Khan, S. N.; Khairuddean, M.; Osman, H. Nat. Prod. Res. 2015, 29, 86-90. https://doi.org/10.1080/14786419.2014.952228
  20. Chear, N. J. Y.; Khaw, K. Y.; Murugaiyah, V.; Lai, C. S. J. Food Drug Anal. 2016, 24, 358-366. https://doi.org/10.1016/j.jfda.2015.12.005
  21. C arletti, E .; Aurbek, N .; Gillon, E .; Loiodice, M .; Nicolet, Y.; Fontecilla-Camps, J. C.; Masson, P.; Thiermann, H.; Nachon, F.; Worek, F. Biochem. J. 2009, 12, 97-106. https://doi.org/10.1042/BJ20090091
  22. Giacobini, E. Pharmacol. Res. 2004, 50, 433-40. https://doi.org/10.1016/j.phrs.2003.11.017
  23. Khaw, K. Y.; Murugaiyah, V.; Khairuddean, M.; Tan, W. N. Nat. Prod. Sci. 2018, 24, 88-92. https://doi.org/10.20307/nps.2018.24.2.88
  24. Liew, S. Y.; Khaw, K. Y.; Murugaiyah, V.; Looi, C. Y.; Wong, Y. L.; Mustafa, M. R.; Litaudon, M.; Awang, K. Phytomedicine 2015, 2 2, 45-48. https://doi.org/10.1016/j.phymed.2014.11.003