References
- Z. Agur, L. Cojocaru, G. Mazaur, R. M. Anderson, Y. L. Danon, Pulse mass measles vaccination across age shorts, Proc. Natl. Acad. Sci. USA, 90 (1993) 11698-11702. https://doi.org/10.1073/pnas.90.24.11698
- G. Ballinger, X. Liu, Boundedness for impulsive delay differential equations and applications in populations growth models, Nonlinear Anal., 53 (2003) 1041-1062. https://doi.org/10.1016/S0362-546X(03)00041-5
- A. D. Onofrio, On pulse vaccination strategy in the SIR epidemic model with vertical transmission, Appl. Lett., 18 (2005) 729-732.
- M. Benchohra, J. Henderson, S. Ntouyas, Impulsive Differential Equations and Inclusions Hindawi, Philadelphia (2007).
- Z. Fan, Impulsive problems for semilinear differential equations with nonlocal conditions, Nonlinear Anal., 72 (2010) 1104-1109. https://doi.org/10.1016/j.na.2009.07.049
- T. Cardinali, P. Rubbioni, Impulsive mild solution for semilinear differential inclusions with nonlocal conditions in Banach spaces, Nonlinear Anal., 75 (2012) 871-879. https://doi.org/10.1016/j.na.2011.09.023
- J. Henderson, A. Ouahab, Impulsive differential inclusions with fractional order, Compu. Math. with Appl., 59 (2010) 1191-1226. https://doi.org/10.1016/j.camwa.2009.05.011
- A. G. Ibrahim, N. A. Alsarori, Mild solutions for nonlocal impulsive fractional semilinear differential inclusions with delay in Banach spaces, Applied Mathematics, 4 (2013) 40-56.
- O. K. Jaradat, A. Al-Omari, S. Momani, Existence of the mild solution for fractional semi-linear initial value problems, Nonlinear Anal. TMA, 69 (2008) 3153-3159. https://doi.org/10.1016/j.na.2007.09.008
- K. Li, J. Peng, J. Gao, Nonlocal fractional semilinear differential equations in separable Banach spaces. Electron. J. Differ. Equ., 7 (2013).
- G. M. Mophou, Existence and uniquness of mild solution to impulsive fractional differential equations, Nonlinear Anal.TMA, 72 (2010) 1604-1615. https://doi.org/10.1016/j.na.2009.08.046
- J. M. Ball, Initial boundary value problems for an extensible beam, J. Math. Anal. Appl., 42 (1973) 16-90.
- L. Byszewski, Theorems about the existence and uniqueness of solutions of a semilinear evolution nonlocal Cauchy problem J. Math. Anal. Appl., 162 (1991) 494-505. https://doi.org/10.1016/0022-247x(91)90164-u
- K. Deng, Exponential decay of solutions of semilinear parabolic equations with nonlocal initial conditions, Journal of Mathematical Analysis and Applications, 179 (1993) 630-637. https://doi.org/10.1006/jmaa.1993.1373
- E. A. Ddas, M. benchohra, S. hamani, Impulsive fractional differential inclusions involving The Caputo fractional derivative, Fractional Calculus and Applied Analysis, 12 (2009) 15-36.
- J. Wang, M. Feckan, Y. Zhou, On the new concept of solutions and existence results for impulsive fractional evolutions, Dynamics of PDE, Vol 8, No.4 (2011) 345-361.
- J. Wang, Y. Zhou, Existence and controllability results for fractional semilinear differential inclusions, Nonlinear Anal., Real World Appl., 12 (2011) 3642-3653. https://doi.org/10.1016/j.nonrwa.2011.06.021
- Y. Zhou, F. Jiao, Nonlocal Cauchy problem for fractional netural evolution equations, Compu. Math. Appl., 59 (2010) 1063-1077. https://doi.org/10.1016/j.camwa.2009.06.026
- T. Lian, C. Xue, S. Deng, Mild solution to fractional differential inclusions with nonlocal conditions, Boundary Value problems, (2016) 2016:219. https://doi.org/10.1186/s13661-016-0724-2
- M. Kamenskii, V. Obukhowskii , P. Zecca, Condensing Multivalued Maps and Semilinear Differential Inclusions in Banach Spaces, De Gruyter Saur. Nonlinear Anal. Appl., Walter Berlin-New 7 (2001).
- J. Banas, K. Goebel, Measure of Noncompactness in Banach Spaces. Lect. Notes Pure Appl. Math., vol. 60. Dekker, New York (1980).
- H. R. Heinz, On the Behavior of measure of noncompactness with respect to differentiation and integration of vector-valued functions, Nonlinear Anal., 7 (1983) 1351-1371. https://doi.org/10.1016/0362-546X(83)90006-8
- D. Bothe, Multivalued perturbation of m-accerative differential inclusions, Isreal J.Math., 108 (1998) 109-138. https://doi.org/10.1007/BF02783044
- J. P. Aubin, H. Frankoeska, Set-valued Analysis, Birkhauser, Boston, Basel, Berlin (1990).
- R. P. Agarwal, M. Meehan, D. O'regan, Fixed Point Theory and Applications, Cambridge Tracts in Mathematics, Cambridge University Press, Cambridge (2001).
- N. A. Alsarori, K. P. Ghadle, On the mild solution for nonlocal impulsive fractional semilinear differential inclusion in Banach spaces, J. Math. Modeling, Vol. 6, No. 2, 2018, pp. 239-258.
- A. Pazy, Semigroups of linear operators and applications to partial differential equations, Applied Mathematical Sciences, Springer-Verlag, New York, (1983).