
J. Korean Soc. Ind. Appl. Math. Vol.24, No.2, 229–242, 2020 http://doi.org/10.12941/jksiam.2020.24.229

NONLOCAL FRACTIONAL DIFFERENTIAL INCLUSIONS WITH IMPULSE
EFFECTS AND DELAY

NAWAL A. ALSARORI1† AND KIRTIWANT P. GHADLE1

1DEPARTMENT OF MATHEMATICAL SCIENCES, DR. BABASAHEB UNIVERSITY, AURANGABAD, 431004(MS),
INDIA

Email address: †n−alsarori@yahoo.com, drkp.ghadle@gmail.com

ABSTRACT. Functional fractional differential inclusions with impulse effects in general Ba-
nach spaces are studied. We discuss the situation when the semigroup generated by the linear
part is equicontinuous and the multifunction is Caratheodory. First, we define the PC-mild so-
lutions for functional fractional semilinear impulsive differential inclusions. We then prove the
existence of PC-mild solutions for such inclusions by using the fixed point theorem, multival-
ued properties and applications of NCHM (noncompactness Hausdorff measure). Eventually,
we enhance the acquired results by giving an example.

1. INTRODUCTION

Impulsive differential equations and impulsive differential inclusions have captured tremen-
dous attention in modeling impulsive problems in various areas; physics, technology, optimal
control, et cetera. The interest in such equations and inclusions arises essentially from their ef-
ficiency in phenomena that cannot be modeled using classical schemes. For instance, processes
which change thier state rapidly at certain moments. One can find some applications in [1, 2, 3].
With regard to the basic of general theory on the topic as well as applied developments, see the
Benchohra’s et al. [4] and the papers [5, 6, 7, 8, 9, 10, 11].

On the other hand, semilinear differential problems with nonlocal conditions are often mo-
tivated by empirical problems, for instance see [12] and [13]. The abstarct work of such prob-
lems was initiated by Byszewski [13]. Nonlocal problems have been received much concern
after it was demonstrated that nonlocal problems can be more descriptive with preferable ef-
fects compared to classical ones in applications, see for example [14]. However, handling the
operator of solution at zero is considered to be the main obstacle of nonlocal conditions prob-
lems in case of studying its compactness. Various techniques and methods have been used by
many authors in this direction. For further details, we suggest [6, 7, 8, 9, 10, 11, 15, 16, 17, 18].
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In particularly, Wang et.al. [17] gave a new definition to mild solutions for nonlocal impulsive
fractional semilinear differential equations. They investigated the case when the single-valued
function is either satisfying Lipschitz condition or a continuous function that takes bounded
sets to bounded sets, and addition compactness of the semigroup is assumed in this case. Us-
ing NCHM, Li [10] obtained results for nonlocal fractional semilinear differential equations,
where the nonlocal term and semigroup are compact and equicontinuous respectivley. Futher-
more, Ibrahim and Alsarori [8] determined conditions suffice to guarantee the existence results
for the nonlocal impulsive fractional semilinear differential inclusions with delay in case of
compactness of the semigroup. Recently, Lian et al. [19] discussed the results of mild solu-
tions existence for nonlocal fractional semilinear inclusions when the operator semigroup is
not necessarily compact.

This paper focuses mainly on extending the results of Lian in [19] when the impulse effects
and delay are involved. Indeed, under the assumptions that the semigroup and the multivalued
function are equicontinuous and Caratheodory respectively we examine the following model:

(Pψ)


cDα

t x(t) ∈ Ax(t) + F (t, τ(t)x), t ∈ J = [0, b], t 6= ti,

∆x(ti) = Ii(x(t−i )), i = 1, ...,m,

x(t) + g(x) = ψ(t), t ∈ [−r, 0],

where cDα denotes the Caputo derivative (0 < α < 1), A is the infinitesimal generator of the
C0−semigroup {T (t), t ≥ 0} on E where E is real separable Banach space, F : J ×Θ→ 2E ,
ψ : [−r, 0]→ E, for every 1 ≤ i ≤ m, Ii : E → E, g : Λ→ E, and ∆x(ti) = x(t+i )−x(t−i ),
x(t+i ) = lims→t+i

x(s), x(t−i ) = lims→t−i
x(s). For any t ∈ J , τ(t) : Λ → Θ, τ(t)x(θ) =

x(t+ θ), θ ∈ [−r, 0], x ∈ Λ.

2. PRELIMINARIES AND NOTATIONS

During this section, we state some previous known results so that we can use them later
throughout this paper. By C(J,E) we denote the Banach space of all continuous functions on
J with ‖x‖ = sup{‖x(t)‖, t ∈ J}, L1(J,E) is Bochner integrable functions space on J .
Let Pb(E) denote the families of all nonemtpy subsets of E which are bounded, Pk(E) denote
the families of all nonemtpy subsets ofE which are compact and Pck(E) denote the families of
all nonemtpy subsets of E which are convex and compact. Also, conv(B) denote the convex
closed hull in E of subset B.

Definition 2.1. ([20]). NCHM (noncompactness Hausdorff measure) on E, χ : Pb(E) →
[0,+∞) is defined by

χ(B) = inf{ε > 0 : B ⊆ ∪nj=1Bj and radius(Bj) ≤ ε}.

Lemma 2.1. ([20]). Let χ as defined above then for any B1, B2 ∈ Pb(E)
1. If B1 ⊂ B2 then χ(B1) ≤ χ(B2);
2. χ({a} ∪B1) = χ(B1), for every a ∈ E;
3. For any compact subset K ⊂ E, χ(B1 ∪K) = χ(B1);
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4. χ(B1 +B2) ≤ χ(B1) + χ(B2),
5. χ(B1) = 0 iff B1 is relatively compact;
6. χ(tB1) =| t | χ(B1), t ∈ R;
7. χ(L(B1)) ≤ ‖L‖χ(B1), where L is a bounded linear operator on E.

Let {t0, t1, · · · , tm, tm+1} be a partition on [0, b]. Let J0 = [0, t1], Ji =]ti, ti+1],
i = 1, · · · ,m, define

PC(J,E) = {x : J → E and x|Ji
∈ C(Ji, E), x(t+i ) and x(t−i ) exist, 0 ≤ i ≤ m}.

Θ = {ψ : [−r, 0]→ E : ψ is continuous everywhere except for a finite number of points t
at which ψ(t−) and ψ(t+)exist and ψ(t) = ψ(t−)},

and

Λ = {x : [−r, b]→ E : x|[−r,0] ∈ Θ, x|Ji
∈ C(Ji, E), and x(t+i ) and x(t−i ) exist, 0 ≤ i ≤ m}.

Obviously, PC(J,E), Θ and Λ are Banach spaces with norms ‖x‖PC(J,E), ‖ψ‖Θ and ‖x‖Λ.
∀x ∈ Λ and t ∈ J, τ(t)x, x ∈ Θ defined as

τ(t)x(θ) = x(t+ θ), ∀θ ∈ [−r, 0].

τ(t)x represents the history of the state time t− r up the present time t.
For any subset B ⊆ Λ and for any i = 0, 1, 2, · · · ,m, we define

B|Ji
= {x∗ : Ji −→ E : x∗(t) = x(t), t ∈ Ji, x∗(ti) = x(t+i ), x ∈ B, }.

Also, let us consider the map χΛ : Pb(Λ)→ [0,∞[ defined by

χΛ(B) = χΘ(B|[−r,0]) + χPC(B) = χΘ(B|[−r,0]) + max
i=0,1,··· ,m

χi(B|Ji
), B ∈ Pb(Λ),

where χi is NCHM on C(Ji, E). It is easy to see that χΛ is the NCHM on Λ.

Definition 2.2. We called x ∈ Λ is a mild solution of (Pψ) if

x(t) =


ψ(t)− g(x), t ∈ [−r, 0],

Tα(t)(ψ(0)− g(x)) +
∫ t

0 (t− s)α−1Sα(t− s)f(s)ds, t ∈ J0,

Tα(t)(ψ(0)− g(x)) +
∑i=m

i=1 Tα(t− ti)yi +
∫ t

0 (t− s)α−1Sα(t− s)f(s)ds, t ∈ Ji,

where yi = Ii(x(t−i )), i = 1, 2, ...,m , f is an integrable selection for F (·, τ(·)x),
Tα(t) =

∫∞
0 ξα(θ)T (tαθ)dθ, Sα(t) = α

∫∞
0 θξα(θ)T (tαθ)dθ,

ξα(θ) = 1
αθ
−1− 1

α$α(θ
−1
α ) ≥ 0, $α(θ) = 1

π

∑∞
n=1(−1)n−1θ−αn−1 Γ(nα+1)

n! sin(nπα), θ ∈
(0,∞) and ξ is a probability density function defined on (0,∞), that is

∫∞
0 ξα(θ)dθ = 1.

Lemma 2.2. ([6]) Assume that (Wn)n≥1 is a sequence of nonempty bounded and closed sub-
sets of E which is decreasing, then ∩∞n=1Wn is compact nonempty subset of E provided that
χ(Wn)→ 0 as n→∞.

Lemma 2.3. ([21]). χ(W (t)) is continuous function and χ(W ) = supt∈J χ(W (t)), where
W be bounded and equicontinuous subset of C(J,E).
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Lemma 2.4. ([22]). Let {un}∞n=1 be a sequence of uniformly integrable functions in L1(J,E),
χ({un(t)}∞n=1) is measurable, χ({

∫ t
0 un(s)ds}∞n=1) ≤ 2

∫ t
0 χ({un(s)}∞n=1)ds.

Lemma 2.5. ([23]). If B is a bounded subset of E, then ∀ ε > 0, ∃ {un}∞n=1 in B with
χ(B) ≤ 2χ({un}∞n=1) + ε.

Lemma 2.6. ([24]). Let E be separable Banach space and W ∈ Pk(E). If (Wn)n≥1 ⊂ W .
Then

conv(lim supn→∞Wn) = ∩N>0 conv(∪n≥NWn).

Definition 2.3. ([20, 22]). If X , Y are topological spaces. F : X → P (Y ) is called:
1. Upper semicontinuous (u.s.c) if for any open set V ⊆ Y , F−1(V ) ⊆ is an open.
2. Completely continuous if ∀ bounded set B ⊂ X , F (B) is relatively compact.
3. Closed in case when its graph is closed in the topological space X × Y .
4. F is said to have a fixed point if there is x ∈ X such that x ∈ F (x).

Remark 2.1. For any closed subset U in X , if , F (x) is closed ∀x ∈ U , and F (U) is compact.
Then F is u.s.c. iff F is closed.

Definition 2.4. The multivalued map F : J × E → P (E) is said to be Caratheodory if
(1) t→ F (t, x) is measurable for each x ∈ E.
(2) x→ F (t, x) is upper semicontinuous.

Definition 2.5. If W = {fn : n ∈ N} ⊂ L1(J,E), then W is semi-compact if:
(i) W is integrably bounded.
(ii) W is relatively compact.

Lemma 2.7. ([20]). If W = {fn : n ∈ N} is semi-compact in L1(J,E), then W is weakly
compact in L1(J,E).

Theorem 2.1. ([25]). Let G : M → 2M be u. s. c., ∀x ∈ M, G(x) is a nonempty, convex
closed subset ofM whereM is nonempty bounded, convex, closed and compact subset of E.
Then ∃ x ∈M such that x ∈ G(x).

3. MAIN RESULTS

Now we will use the NCHM and multivalued fixed point theorem to prove the existence of
mild solutions for our problem Pψ.

Theorem 3.1. Suppose the following hypotheses:
(HA) A : D(A) ⊂ E → E generates an equicontinuous C0-semigroup {T (t) : t ≥ 0}. Also,
∃M such that supt∈J ‖T (t)‖ ≤M , where M is a positive constant.
(HF) F : J ×Θ→ Pck(E) is a multifunction satisfies:

(1) F is Caratheodory and for each fixed x ∈ Λ the set S1
F (·,τ(·)x) = {f ∈ L1(J,E) :

f(t) ∈ F (t, τ(t)x), a.e.} 6= ∅.
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(2) If q ∈ (0, α), there exists ς ∈ L
1
q (J,R+) , with for any x ∈ Θ, ‖F (t, x)‖ ≤

ς(t)(1 + ‖x(0)‖) for a.e. t ∈ J .

(3) There exists a constant L > 0 with
4MLbα

Γ(1 + α)
< 1 such that for any bounded subset B

of Θ, we have χ(F (t, B)) ≤ Lχ(B) for a.e. t ∈ J .
(Hg) Let g : Λ→ E be continuous, compact function and there exists a constant β > 0 such
that ‖g(x)‖ ≤ β for all x ∈ Λ.
(HI) For every i = 1, 2 · · · ,m, let Ii : E → E be continuous and compact function with
‖Ii(x)‖ ≤ hi‖x‖ ∀ x ∈ E where hi is a positive constant.

(Hr) There is a positive constant r such that

(M + 1)[‖ψ‖+ β] +M [h(r + ‖ψ‖] + γ(1 + ‖ψ‖+ r)‖ς‖
L

1
q

([0,t],R+)

] ≤ r (3.1)

Where h =
∑m

i=1 hi, γ =
Mbα−q

Γ(1 + α)(ω + 1)1−q and ω =
α− 1

1− q
Then Pψ has at least one mild solution.

Proof. Let G : Λ→ 2Λ, such that: y ∈ G(x) iff

y(t) =


ψ(t)− g(x), t ∈ [−r, 0],

Tα(t)(ψ(0)− g(x)) +
∫ t

0 (t− s)α−1Sα(t− s)f(s)ds, t ∈ J0,

Tα(t)(ψ(0)− g(x)) +
∑k=i

k=1 Tα(t− tk)Ik(x(t−k ))

+
∫ t

0 (t− s)α−1Sα(t− s)f(s)ds, t ∈ Ji.

(3.2)

Where f ∈ S1
F (·,τ(·)x) and 1 ≤ i ≤ m. Clearly, any fixed point of G is a mild solution for Pψ.

Hence, our aim is to show that G has fixed point by using Theorem 2.1.

Firstly, We show that G(x) ⊂ Λ are convex in Λ. Let x ∈ Λ, y1, y2 ∈ G(x) and λ ∈ (0, 1)
and let t ∈ [−r, 0] from (3.2) we have

λy1(t) + (1− λ)y2(t) = ψ(t)− g(x).

Thus, λy1(t) + (1− λ)y2(t) ∈ G(x), t ∈ [−r, 0]. If t ∈ J0, from (3.2) we have

λy1(t) + (1− λ)y2(t) = Tα(t)g(x) +

∫ t

0
(t− s)α−1Sα(t− s)[λf1(s) + (1− λ)f2(s)]ds,

where f1, f2 ∈ S1
F (.,τ(.)x). Easily, one can see that S1

F (.,τ(.)x) is convex because the values of F
are convex. Then, [λf1 +(1−λ)f2] ∈ S1

F (.,τ(.)x). Thus, λy1(t)+(1−λ)y2(t) ∈ G(x), t ∈ J0.
Similarly, we can show that λy1(t) + (1− λ)y2(t) ∈ G(x) for t ∈ Ji, i = 1, 2, · · · ,m. Which
means that G(x) is convex for each x ∈ Λ.
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Next we show that G has closed value for every x ∈ Λ.
Suppose that {zn}∞n=1 is a sequence in G(x) such that zn → z as n → ∞. We need to
prove that z ∈ G(x). From (3.2), there exists a sequence {fn}∞n=1 ⊂ S1

F (.,τ(.)x) such that for
i = 1, · · · ,m

zn(t) =


ψ(t)− g(x), t ∈ [−r, 0],

Tα(t)(ψ(0)− g(x)) +
∫ t

0 (t− s)α−1Sα(t− s)fn(s)ds, t ∈ J0,

Tα(t)(ψ(0)− g(x)) +
∑k=i

k=1 Tα(t− tk)Ik(x(t−k ))

+
∫ t

0 (t− s)α−1Sα(t− s)fn(s)ds, t ∈ Ji.

(3.3)

By (HF)(3.2) we have ∀n ≥ 1 and a.e. t ∈ J, ‖fn(t)‖ ≤ ς(t)(1 + ‖x(t)‖) ≤ ς(t)(1 + ‖x‖Λ).
So, {fn : n ≥ 1} is integrable bounded. Also, since {fn(t) : n ≥ 1} ⊂ F (·, τ(·)x), {fn : n ≥
1} is relatively compact in E for a.e. t ∈ J . Then, the set {fn : n ≥ 1} semicompact. So,
it is weakly compact in L1(J,E). We suppose that the sequence (fn)n≥1 converges weakly
to f ∈ L1(J,E).Thus, there is a sequence ( Mazur’s Lemma) {vn}∞n=1 ⊆ conv{fn : n ≥ 1}
such that vn converges strongly to f . As F is u. s. c. with convex and compact values, then by
using Lemma 2.7 we get

f(t) ∈ ∩k≥1{vn : n ≥ k}

⊆ ∩k≥1conv{fn(t) : n ≥ k} ⊆ F (t, τ(t)x)

Therefore, f ∈ S1
F (t,τ(t)x).

Also, by using Holder inequality it can be shown that for all t ∈ J, s ∈ (0, t] and ∀n ≥ 1 we
have

‖(t− s)α−1Sα(t− s)fn(s)‖ ≤ |t− s|α−1 Mα

Γ(α+ 1)
ς(s)(1 + ‖x‖Λ) ∈ L1(J,R+).

Therefore, by the Lebesgue dominated convergence theorem, if we take n→∞ on both sides
of (3.3), we will get

z(t) =


ψ(t)− g(x), t ∈ [−r, 0],

Tα(t)(ψ(0)− g(x)) +
∫ t

0 (t− s)α−1Sα(t− s)f(s)ds, t ∈ J0,

Tα(t)(ψ(0)− g(x)) +
∑k=i

k=1 Tα(t− tk)Ik(x(t−k ))

+
∫ t

0 (t− s)α−1Sα(t− s)f(s)ds, t ∈ Ji, 1 ≤ i ≤ m.

Which means that z(t) ∈ G(x).

Now, let us set B0 = {x ∈ Λ : ‖x− x0‖ ≤ r, t ∈ J}. Where

x0(t) =

{
ψ(t), t ∈ [−r, 0],

ψ(0), t ∈ J.

Clearly, B0 is a bounded subset of Λ. Moreover, B0 is closed and convex. We need to prove
that G(B0) ⊂ B0. For fixed y ∈ G(B0), let x ∈ B0 such that y ∈ G(x) and t ∈ J . If
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t ∈ [−r, 0], then by using (Hg) and (3.1) we have

‖y(t)− x0(t)‖ ≤ ‖g(x)‖ ≤ β ≤ r
By using Lemma 2.2, (HF)(3.2), (Hg), (3.1) and Holder’s inequality we have for t ∈ J0

‖y(t)− x0(t)‖ ≤ ‖ψ(0)‖+M(‖ψ(0)‖+ β +
M

Γ(α)
(1 + ‖x‖Λ)

∫ t

0
(t− s)α−1ς(s)ds

≤ ‖ψ‖+M(‖ψ‖+ β) +
bα−qM(1 + ‖ψ‖+ r)

Γ(α)($ + 1)1−q ‖ς‖
L

1
q (J,R+)

≤ ‖ψ‖+M(‖ψ‖+ β) + γ(1 + ‖ψ‖+ r)‖ς‖
L

1
q (J,R+)

≤ r.

Similarly, for t ∈ Ji, i = 1, · · · ,m, by using (HI) in addition we get

‖y(t)− x0(t)‖ ≤ ‖ψ‖+M(‖ψ‖+ β) + h(r + ‖ψ‖) + γ(1 + ‖ψ‖+ r)‖ς‖
L

1
q (J,R+)

≤ r.

Which follows that y ∈ B0. Then, G(B0) ⊂ B0.

In this step we show that G(B0)|Ji
is equicontinuous, i = 0, 1, · · · ,m where

G(B0)|Ji
= {y∗ ∈ C(Ji, E) : y∗(t) = y(t), t ∈ Ji = (ti, ti+1], y∗(ti) = y(t+i ), y ∈

G(B0)}.

Let y ∈ G(B0). Then there exist x ∈ B0 with y ∈ G(x). Form (3.2), there exist f ∈
S1
F (.,τ(.)x) such that

y(t) =


ψ(t)− g(x), t ∈ [−r, 0],

Tα(t)(ψ(0)− g(x)) +
∫ t

0 (t− s)α−1Sα(t− s)f(s)ds, t ∈ J0,

Tα(t)(ψ(0)− g(x)) +
∑k=i

k=1 Tα(t− tk)Ik(x(t−k ))

+
∫ t

0 (t− s)α−1Sα(t− s)f(s)ds, t ∈ Ji, 1 ≤ i ≤ m.

By the continuity of ψ, one can see easily that if t, t+ σ ∈ [−r, 0], then

lim
σ→0
‖y∗(t+ σ)− y∗(t)‖ = 0. (3.4)

Now, we prove G(B0) is equicontinuous on J , to show that it is enough to verify the equicon-
tinuity of G(B0)|Ji

∀i = 0, 1, · · · ,m. We study two cases:
Case 1. if i = 0.

1. Let t = 0 and σ > 0 such that t + σ ∈ (0, t1]. By using Holder’s inequality, (HA) and
Lemma 2.2(vi), we get

‖y∗(t+ σ)− y∗(t)‖ = ‖y(σ)− y(0)‖ ≤ ‖Tα(σ)(ψ(0)− g(x))− Tα(0)(ψ(0)− g(x))‖
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+‖
∫ σ

0
(σ − s)α−1Sα(σ − s)f(s)ds‖

≤ ‖Tα(σ)−Tα(0)‖‖ψ(0)−g(x)‖+M(1 + ‖ψ‖+ r)

Γ(α)
‖ς‖

L
1
q (J,R+)

σα−q

($ + 1)1−q → 0 as σ → 0.

Therefore,

lim
σ→0
‖y∗(t+ σ)− y∗(t)‖ = 0, (3.5)

not dependent on x.

2. Let t ∈ (0, t1) and σ > 0 such that t+ σ ∈ (0, t1), then

‖y∗(t+ σ)− y∗(t)‖ = ‖y(t+ σ)− y(t)‖ ≤ ‖Tα(t+ σ)(ψ(0)− g(x))−Tα(t)(ψ(0)− g(x))‖

+‖
∫ t+σ

0
(t+ σ − s)α−1Sα(t+ σ − s)f(s)ds−

∫ t

0
(t− s)α−1Sα(t− s)f(s)ds‖

≤ G1 +G2 +G3 +G4,

where
G1 = ‖Tα(t+ σ)(ψ(0)− g(x))− Tα(t)(ψ(0)− g(x))‖,
G2 = ‖

∫ t
0 [(t+ σ − s)α−1 − (t− s)α−1]Sα(t+ σ − s)f(s)ds‖,

G3 = ‖
∫ t

0 (t− s)α−1[Sα(t+ σ − s)− Sα(t− s)]f(s)ds‖,
G4 = ‖

∫ t+σ
t (t+ σ − s)α−1Sα(t+ σ − s)f(s)ds‖.

We need show that Gi → 0 as σ → o ∀i = 1, 2, 3, 4. By arguing as in Step 4 in the proof of
Theorem 2 of [26] and Step 3 in the proof of Theorem 4 of [8] we obtain

lim
σ→0
‖y∗(t+ σ)− y∗(t)‖ = 0. (3.6)

3. When t = t1. Let σ > 0 and δ > 0 such that t1 + σ ∈ J1 and t1 < δ < t1 + σ ≤ t2, then
we have

‖y∗(t1 + σ)− y∗(t1)‖ = lim
δ→t+1

‖y(t1 + σ)− y(δ)‖.

From the definition of G, we obtain

‖y(t1 + σ)− y(δ)‖ ≤ ‖Tα(t1 + σ)(ψ(0)− g(x))− Tα(δ)(ψ(0)− g(x))‖

+

k=i∑
k=1

‖Tα(t1 + σ − tk)Ik(x(t−k ))− Tα(δ − tk)Ik(x(t−k ))‖

+‖
∫ t1+σ

0
(t1 + σ − s)α−1Sα(t1 + σ − s)f(s)ds−

∫ δ

0
(δ − s)α−1Sα(δ − s)f(s)ds‖.
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With similar argument as in the previous way, we have

lim
σ→0
δ→t+1

‖y(t1 + σ)− y(δ)‖ = 0. (3.7)

Case 2. If i = 1, 2, · · · ,m. With similar argument as in the case 1 we can prove that

lim
σ→0
‖y∗(t+ σ)− y∗(t)‖ = 0. (3.8)

From (3.5) to (3.8) we get G(B0)|Ji
is equicontinuous ∀i = 0, 1, · · · ,m, and from (3.4) to

(3.8) we conclude that G(B0) is equicontinuous.
Now, we define a sequence Bn = convG(Bn−1), n ≥ 1. From the previous, we have that
Bn is nonempty, convex and closed in Λ. Moreover, B1 = convG(B0) ⊂ B0. By induction,
(Bn)n≥1 is decreasing sequence of bounded, closed, convex and equicontinuous subsets of Λ.
Put B = ∩∞n=1Bn. So, B is a bounded, closed, convex and equicontinuous subset of Λ and
G(B) ⊂ B. We want to prove that B is nonempty and compact in Λ. By light of Lemma 2.2,
we need only to show that limn→∞ χΛ(Bn) = 0, where χΛ is the NCHM on Λ. By Lemma
2.5, for arbitrary ε > 0 there exist sequence {yk}∞k=1 in G(Bn−1) such that

χΛ(Bn) = χΛG(Bn−1) ≤ 2χΛ{yk : k ≥ 1}+ε ≤ 2χΘ{yk : k ≥ 1}+2χPC{yk : k ≥ 1}+ε.

From the definition of χPC , χΛ(Bn) ≤ 2χΘ(v|[−r,0]) + 2 max0≤i≤m χi(v|Ji
) + ε, where v =

{yk : k ≥ 1} and χi is the NCHM on C(Ji, E). By using the equicontinuity Bn|Ji
, i =

0, 1, · · · ,m, by using Lemma 2.3 we get

χi(v|Ji
) = sup

t∈Ji
χ(v(t)),

where χ is NCHM on E. Thus, by using the nonsinglarity of χ we get

χΛ(Bn) ≤ 2χΘ(v|[−r,0])+2 max
i=0,1,··· ,m

[sup
t∈Ji

χ(v(t))]+ε = 2 sup
t∈[−r,0]

χ(v(t))+2 sup
t∈J

χ(v(t))+ε.

Then,

χΛ(Bn) ≤ 2 sup
t∈[−r,0]

χ(v(t)) + 2 sup
t∈J

χ{yk : k ≥ 1}+ ε. (3.9)

Since yk ∈ G(Bn−1), k ≥ 1 there is xk ∈ Bn−1 such that yk ∈ G(xk), k ≥ 1. From the
definition of G, there exist fk ∈ S1

F (·,τ(·)xk(·)). So, we can rewrite (3.9) as

χΛ(Bn) ≤ 2 sup
t∈J

χ{yk : k ≥ 1} ≤



χ(ψ(t)− g(xk)), t ∈ [−r, 0],

χ(Tα(t)(ψ(0)− g(xk)))

+χ(
∫ t

0 (t− s)α−1Sα(t− s)fk(s)ds), t ∈ J0,

χ(Tα(t)(ψ(0)− g(xk))) +
∑r=i

r=1 χ(Tα(t− tr)Ir(xk(t−r )))

+χ(
∫ t

0 (t− s)α−1Sα(t− s)fk(s)ds), t ∈ Ji, 1 ≤ i ≤ m.
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Since, g and Ii for every i = 1, 2, · · · ,m are compact, by Lemma 2.1 we get ∀t ∈ [−r, 0]
and k ≥ 1

χ{Tα(t)(ψ(t)− g(xk)) : k ≥ 1} = 0. (3.10)

Moreover, ∀t ∈ J
χ{Tα(t)(ψ(0)− g(xk)) : k ≥ 1} = 0, (3.11)

χ{Tα(t− tr)Ir(xk(t−r )) : k ≥ 1} = 0. (3.12)

Hence, by (3.10), (3.11) and (3.12) for every t ∈ J we have

χΛ(Bn) ≤ ε+ 2 sup
t∈J

χ{
∫ t

0
(t− s)α−1Sα(t− s)fk(s)ds : k ≥ 1}.

Now, we will estimate χ{
∫ t

0 (t − s)α−1Sα(t − s)fk(s)ds : k ≥ 1}. By using Lemma 2.1,
Lemma 2.4 and (HF)(3.3), we get

χΛ(Bn) ≤ 4

∫ t

0
(t− s)α−1χ{Sα(t− s)fk(s) : k ≥ 1}ds+ ε

≤ 4αM

Γ(1 + α)

∫ t

0
(t− s)α−1χ(F (s,Bn−1(s)))ds+ ε

≤ 4αML

Γ(1 + α)

∫ t

0
(t− s)α−1χ(Bn−1(s))ds+ ε

≤ 4αML

Γ(1 + α)

∫ t

0
(t− s)α−1χPC(Bn−1)ds+ ε

≤ 4αML

Γ(1 + α)
χPC(Bn−1)

∫ t

0
(t− s)α−1ds+ ε

≤ 4MLbα

Γ(1 + α)
χPC(Bn−1) + ε.

Since ε is arbitrary, we find
χΛ(Bn) ≤ δχPC(Bn−1),

where δ =
4ML

Γ(1 + α)
< 1.

Clearly, by means of finite number of steps we can write

0 ≤ χΛ(Bn) ≤ δn−1χPC(B1).

By using (HF)(3.3), if we take the limit as n→∞, we get

lim
n→∞

χΛ(Bn) = 0.

Thus, B = ∩∞n=1Bn is nonempty and compact by Lemma 2.3.
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Now, our aim to prove that G|B : B → 2B has closed graph. Let {xn}∞n=1 in B, xn → x
as n → ∞, yn ∈ G(xn) and yn → y as n → ∞. We need to prove that y ∈ G(x). Because,
yn ∈ G(xn), for any n ≥ 1 there exists fn ∈ S1

F (·,τ(·)xn) such that

yn(t) =


ψ(t)− g(xn), t ∈ [−r, 0],

Tα(t)(ψ(0)− g(xn)) +
∫ t

0 (t− s)α−1Sα(t− s)fn(s)ds, t ∈ J0,

Tα(t)(ψ(0)− g(xn)) +
∑k=i

k=1 Tα(t− tk)Ik(xn(t−k ))

+
∫ t

0 (t− s)α−1Sα(t− s)fn(s)ds, t ∈ Ji.

Since, xn → x uniformly, we have for any t ∈ J

lim
n→∞

‖τ(t)xn − τ(t)x‖Θ = 0.

We know that ∀n ≥ 1, ‖fn(t)‖ ≤ ς(t)(1+‖τxn(0)‖) ≤ ς(t)(1+‖xn‖Λ) ≤ ς(t)(1+r+‖ψ‖)
for a.e. t ∈ J. This show that {fn : n ≥ 1} is integrably bounded. Moreover, (HF)(3.3) and
convergence of {xn}∞n=1 implies that

χ{fn : n ≥ 1} ≤ χ(F (t, {xn(t) : n ≥ 1}) ≤ Lχ{xn(t) : n ≥ 1} = 0.

This means that the sequence {fn : n ≥ 1} is relatively compact in E for a.e. t ∈ J . So,
the sequence {fn : n ≥ 1} is semicompact and by using Lemma 2.7 it is weakly compact in
L1(J,E). We can suppose that fn → f ∈ L1(J,E) weakly. Then from Mazur’s Lemma, there
is a sequence {un}∞n=1 ⊆ conv{fn : n ≥ 1} such that un converges strongly to f . Since F is
u.s.c. and has compact and convex values, so by using Lemma 2.6 we get

f(t) ∈ ∩k≥1{un(t) : n ≤ k} ⊆ ∩k≥1conv{fn : n ≥ k}

⊆ ∩k≥1conv{∪n≥kF (t, τ(t)xn)} = conv lim
n→∞

supF (t, τ(t)xn) ⊆ F (t, τ(t)x).

Then, by continuity of ψ, g, Tα, Sα, Ii(i = 1, · · · ,m) and by the same arguments used when
proving G is closed, we get

y(t) =


ψ(t)− g(x), t ∈ [−r, 0],

Tα(t)(ψ(0)− g(x)) +
∫ t

0 (t− s)α−1Sα(t− s)f(s)ds, t ∈ J0,

Tα(t)(ψ(0)− g(x)) +
∑k=i

k=1 Tα(t− tk)Ik(x(t−k ))

+
∫ t

0 (t− s)α−1Sα(t− s)f(s)ds, t ∈ Ji, 1 ≤ i ≤ m.

Hence, y ∈ G(x). This means that G|B has closed graph.

Finally, we prove that G is u.s.c. on B.
From the above, we have that B is closed and G(x) is closed ∀x ∈ B. Moreover, G is closed
and the set G(B) ⊆ B is compact. Therefore, by Remark 2.1, we conclude that G is u.s.c..
At the end, by Theorem 2.1, G has at least one point x such that x ∈ G(x) which is mild
solution for the problem Pψ.
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4. EXAMPLE

We study the following system :
∂αt y(t, z) ∈ ∂2

zy(t, z) +R(t, τ(t, z)y), t ∈ [0, 1], t 6= ti, z ∈ [0, 1]

y(t, 0) = y(t, 1) = 0,

y((
i

m+ 1
)+, z) = y(

i

m+ 1
, z) +

1

2i
, i = 1, · · · ,m, z ∈ [01],

y(t, z) =
∑j=q

j=0

∫ 1
0 kj(z, v)tan−1(y(sj , v))dv, z ∈ [0, 1],

(4.1)

where 0 < s0 < s1 < · · · < sq < 1, kj ∈ C([0, 1] × [0, 1],R), j = 0, 1, · · · , q, ∂αt is the
Caputo fractional partial derivative of order α, where 0 < α < 1 and R : [0, 1]× E → P (E).

To rewrite (4.1) in the abstract form, we set E = L2([−1, 1],R), and A is the Laplace op-

erator, i.e. A =
∂2

∂z2
on the domain D(A) = {x ∈ E : x, x′ are absolutely continuous, and

x′′ ∈ E, x(0) = x(1) = 0}. From [27], A is the infinitesimal generator of an analytic and
compact semigroup {T (t)}t≥0 in E. This leads to that A satisfies the assumption (HA).
For every i = 1, · · · ,m define Ii : E → E by

Ii(x)(z) =
1

2i
, z ∈ [0, 1].

Note that the assumption (HI) is satisfied.
For every j = 0, 1, · · · , q, define Hj : E → E as

(Hj(x))(z) =

∫ 1

0
kj(z, v)tan−1(x(v))dv, z ∈ [0, 1].

Now take g : PC([0, 1], E)→ E as

g(x) =

j=q∑
j=0

Hj(x(sj)).

Finally, let F (t, x)(z) = R(t, x(z)) and x(t)(z) = x(t, z), where z ∈ [0, 1]. Then, the system
(4.1) takes the form :

cDαx(t) ∈ Ax(t) + F (t, τ(t)x), t ∈ J = [0, 1], t 6= ti, i = 1, ...,m,

x(t+i ) = x(ti) + Ii(x(t−i )), i = 1, ...,m,

x(t) = g(x), t ∈ [−1, 0].

If we put some conditions on F as in Theorem 3.1, then (4.1) has at least one mild solution on
[−1, 1].
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CONCLUSION

The present article discussed the necessary conditions to ensure the existence of mild solu-
tions for nonlocal differential inclusions with impulse effects and delay in Banach space. We
investigated the case when the linear part generates a semigroup not required to be compact
and the multifunction is Caratheodory. We first defined the PC-mild solutions for functional
fractional semilinear impulsive differential inclusions. Then, methods and results of NCHM,
multivalued functions and fixed point theorems were used to prove the results. Our results
given in this paper developed and extended some previous studies. In the end, an example was
presented to support the main findings.

ACKNOWLEDGMENTS

The authors express their deep gratitude to the referees for their valuable suggestions and
comments for improvement of the paper.

REFERENCES

[1] Z. Agur, L. Cojocaru, G. Mazaur, R. M. Anderson, Y. L. Danon, Pulse mass measles vaccination across age
shorts, Proc. Natl. Acad. Sci. USA, 90 (1993) 11698-11702.

[2] G. Ballinger, X. Liu, Boundedness for impulsive delay differential equations and applications in populations
growth models, Nonlinear Anal., 53 (2003) 1041-1062.

[3] A. D. Onofrio, On pulse vaccination strategy in the SIR epidemic model with vertical transmission, Appl.
Lett., 18 (2005) 729-732.

[4] M. Benchohra, J. Henderson, S. Ntouyas, Impulsive Differential Equations and Inclusions Hindawi, Philadel-
phia (2007).

[5] Z. Fan, Impulsive problems for semilinear differential equations with nonlocal conditions, Nonlinear Anal.,
72 (2010) 1104-1109.

[6] T. Cardinali, P. Rubbioni, Impulsive mild solution for semilinear differential inclusions with nonlocal condi-
tions in Banach spaces, Nonlinear Anal., 75 (2012) 871-879.

[7] J. Henderson, A. Ouahab, Impulsive differential inclusions with fractional order, Compu. Math. with Appl.,
59 (2010) 1191-1226.

[8] A. G. Ibrahim, N. A. Alsarori, Mild solutions for nonlocal impulsive fractional semilinear differential inclu-
sions with delay in Banach spaces, Applied Mathematics, 4 (2013) 40-56.

[9] O. K. Jaradat, A. Al-Omari, S. Momani, Existence of the mild solution for fractional semi-linear initial value
problems, Nonlinear Anal. TMA, 69 (2008) 3153-3159.

[10] K. Li, J. Peng, J. Gao, Nonlocal fractional semilinear differential equations in separable Banach spaces. Elec-
tron. J. Differ. Equ., 7 (2013).

[11] G. M. Mophou, Existence and uniquness of mild solution to impulsive fractional differential equations, Non-
linear Anal.TMA, 72 (2010) 1604-1615.

[12] J. M. Ball, Initial boundary value problems for an extensible beam, J. Math. Anal. Appl., 42 (1973) 16-90.
[13] L. Byszewski, Theorems about the existence and uniqueness of solutions of a semilinear evolution nonlocal

Cauchy problem J. Math. Anal. Appl., 162 (1991) 494-505.
[14] K. Deng, Exponential decay of solutions of semilinear parabolic equations with nonlocal initial conditions,

Journal of Mathematical Analysis and Applications, 179 (1993) 630-637.
[15] E. A. Ddas, M. benchohra, S. hamani, Impulsive fractional differential inclusions involving The Caputo frac-

tional derivative, Fractional Calculus and Applied Analysis, 12 (2009) 15-36.



242 N. A. ALSARORI AND K. P. GADLE

[16] J. Wang, M. Feckan, Y. Zhou, On the new concept of solutions and existence results for impulsive fractional
evolutions, Dynamics of PDE, Vol 8, No.4 (2011) 345-361.

[17] J. Wang, Y. Zhou, Existence and controllability results for fractional semilinear differential inclusions, Non-
linear Anal., Real World Appl., 12 (2011) 3642-3653.

[18] Y. Zhou, F. Jiao, Nonlocal Cauchy problem for fractional netural evolution equations, Compu. Math. Appl.,
59 (2010) 1063-1077.

[19] T. Lian, C. Xue, S. Deng, Mild solution to fractional differential inclusions with nonlocal conditions, Boundary
Value problems, (2016) 2016:219.

[20] M. Kamenskii, V. Obukhowskii , P. Zecca, Condensing Multivalued Maps and Semilinear Differential Inclu-
sions in Banach Spaces, De Gruyter Saur. Nonlinear Anal. Appl., Walter Berlin-New 7 (2001).

[21] J. Banas, K. Goebel, Measure of Noncompactness in Banach Spaces. Lect. Notes Pure Appl. Math., vol. 60.
Dekker, New York (1980).

[22] H. R. Heinz, On the Behavior of measure of noncompactness with respect to differentiation and integration of
vector-valued functions, Nonlinear Anal., 7 (1983) 1351-1371.

[23] D. Bothe, Multivalued perturbation of m-accerative differential inclusions, Isreal J.Math., 108 (1998) 109-138.
[24] J. P. Aubin, H. Frankoeska, Set-valued Analysis, Birkhäuser, Boston, Basel, Berlin (1990).
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