References
- S.U.S Choi and J.A. Eastman, Enhancing thermal conductivity of fluids with nanoparticles, ASME International Mechanical Engineering Congress & Exposition, 1995.
- B.C. Pak and Y.I. Cho, Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles, Exp. Heat Transfer 11(2) (1998) 151-170 https://doi.org/10.1080/08916159808946559
- D. Wen and Y. Ding, Experimental investigation into convective heat transfer of nanofluids at the entrance region under laminar flow conditions, Int. J. Heat Mass Transf. 47(24) (2004), 5181-5188 https://doi.org/10.1016/j.ijheatmasstransfer.2004.07.012
- Y. Xuan and Q. Li, Investigation on convective heat transfer and flow features on nanofluids, J. Heat Transfer 125(1) (2003), 151-155 https://doi.org/10.1115/1.1532008
- G. Roy, C.T. Nguyen and P.-R. Lajoie, Numerical investigation of laminar flow and heat transfer in a radial flow cooling system with the use of nanofluids, Superlattices and Microstructures 35(3-6) (2004), 497-511 https://doi.org/10.1016/j.spmi.2003.09.011
-
R.S. Vajjha, D.K. Das and P.K. Namburu, Numerical study of fluid dynamic and heat transfer performance of
$Al_2O_3$ and CuO nanofluids in the flat tubes of a radiator, Int. J. Heat Fluid Flow 31(4) (2010) 613-621 https://doi.org/10.1016/j.ijheatfluidflow.2010.02.016 - M.M. Rahman and I.A. Eltayeb, Radiative heat transfer in a hydromagnetic nanofluid past a non-linear stretching surface with convective boundary condition, Meccanica 48(3) (2013) 601-615 https://doi.org/10.1007/s11012-012-9618-2
- M.M. Rahman, A.V. Rosca and I. Pop, Boundary layer flow of a nanofluid past a permeable exponentially shrinking/stretching surface with second order slip using Buongiorno's model, Int. J. Heat Mass Transf. 77 (2014) 1133-1143 https://doi.org/10.1016/j.ijheatmasstransfer.2014.06.013
- M.A. Sheremet and I. Pop, Mixed convection in a lid-driven square cavity filled by a nanofluid: Buongiorno's mathematical model, Appl. Math. Comput. 266 (2015) 792-808 https://doi.org/10.1016/j.amc.2015.05.145
- J. Buongiorno, Convective transport in nanofluids, J. Heat Transf. 128(3), (2006) 240-250 https://doi.org/10.1115/1.2150834
- M.J. Uddin, M.S. Alam and M.M. Rahman, Natural convective heat transfer flow of nanofluids inside a quarter-circular enclosure using nonhomogeneous dynamic model, Arab. J. Sci. Eng. 42(5) (2017) 1883-1901 https://doi.org/10.1007/s13369-016-2330-0
- H.C. Brinkman, The viscosity of concentrated suspensions and solutions, J. Chem. Phys. 20(4), (1952) 571-571 https://doi.org/10.1063/1.1700493
- G.K. Batchelor, The effect of Brownian motion on the bulk stress in a suspension of spherical particles, J. Fluid Mech. 83(1) (1977) 97-117 https://doi.org/10.1017/S0022112077001062
- C.T. Nguyen, F. Desgranges, G. Roy, N. Galanis, T. Mare, S. Boucher and H. Angue Mintsa, Temperature and particle-size dependent viscosity data for water-based nanofluids-Hysteresis phenomenon, Int. J. Heat & Fluid Flow 28(6) (2007) 1492-1506 https://doi.org/10.1016/j.ijheatfluidflow.2007.02.004
-
C.T. Nguyen, F. Desgranges, N. Galanis, G. Roy, T. Mare, S. Boucher and H. Angue Mintsa, Viscosity data for
$Al_2O_3$ -water nanofluid-hysteresis: is heat transfer enhancement using nanofluids reliable?, Int. J. Therm. Sci. 47(2) (2008) 103-111 https://doi.org/10.1016/j.ijthermalsci.2007.01.033 - J.C. Maxwell, A treatise on electricity and magnetism, Vol I, II, Oxford: Clarendon Press, 1873
- Y.Xuan, Q.Li and W.Hu, Aggregation structure and conductivity of nanofluids, AIChE J. 49(4) (2003) 1038-1043 https://doi.org/10.1002/aic.690490420
- R.H. Nochetto and J.-H. Pyo, The gauge-Uzawa finite element method. part I: the Navier-Stokes equations, SIAM Journal on Numerical Analysis 43(3) (2005), 1043-1068 https://doi.org/10.1137/040609756
- R.H. Nochetto and J.-H. Pyo, A finite element gauge-Uzawa method part II : Boussinesq equations, Mathematical Models Methods in Applied Sciences 16, (2006), 1599-1626 https://doi.org/10.1142/s0218202506001649
- J.-H. Pyo and J. Shen, Gauge-Uzawa methods for incompressible flows with variable density, Journal of Computational Physics 221(1) (2007), 181-197 https://doi.org/10.1016/j.jcp.2006.06.013
- R. Temam, Navier-Stokes equations, AMS Chelsea Publishing, 2001.
- A.J. Chorin, Numerical solution of the Navier-Stokes equations, Math. Comp., 22, (1968) 745-762 https://doi.org/10.1090/S0025-5718-1968-0242392-2
- R. Temam, Sur l'approximation de la solution des equations de Navier-Stokes par la methode des pas fractionnaires (II), Arch. Rational Mech. Anal., 33(5) (1969), 377-385 https://doi.org/10.1007/BF00247696
- R.L. Hamilton and O.K. Crosser, Thermal conductivity of heterogeneous two-component systems, Ind. Eng. Chem. Fundamen. 1(3) (1962) 187-191 https://doi.org/10.1021/i160003a005