References
- Ali H, Khan E, Sajad MA (2013) Phytoremediation of heavy metalsconcepts and applications. Chemosphere 91: 869-881 https://doi.org/10.1016/j.chemosphere.2013.01.075
- Wuana RA, Okieimen FE (2011) Heavy metals in contaminated soils: a review of sources, chemistry, risks and best available strategies for remediation. ISRN Ecology 2011: 1-20 https://doi.org/10.5402/2011/402647
- Bai HJ, Zhang ZM, Yang GE, Li BZ (2008) Bioremediation of cadmium by growing Rhodobacter sphaeroides: Kinetic characteristic and mechanism studies. Bioresource Technol 99: 7716-7722 https://doi.org/10.1016/j.biortech.2008.01.071
- Gad AS, Attia M, Ahmed HA (2010) Heavy metals bio-remediation by immobilized Saccharomyces cerevisiae and Opuntia ficus indica waste. J American Sci 6: 79-87
- Soares EV, Soares HM (2012) Bioremediation of industrial effluents containing heavy metals using brewing cells of Saccharomyces cerevisiae as a green technology: a review. Environ Sci Pollut Res Int 19: 1066-1083 https://doi.org/10.1007/s11356-011-0671-5
- Gaur N, Flora G, Yadav M, Tiwari A (2014) A review with recent advancements on bioremediation-based abolition of heavy metals. Environ Sci Processes Impacts 16: 180-193 https://doi.org/10.1039/C3EM00491K
- Srivastava J, Naraian R, Kalra SJS, Chandra H (2014) Advance in microbial bioremediation and the factors influencing the process. Inl J Environ Sci Tech 11: 1787-1800 https://doi.org/10.1007/s13762-013-0412-z
- Tsekova K, Todorova D, Ganeva S (2010) Removal of heavy metals from industrial wastewater by free and immobilized cells of Aspergillus niger. International Biodeterioration & Biodegradation 64: 447-451 https://doi.org/10.1016/j.ibiod.2010.05.003
- El-Sayed MT (2012) The use of Saccharomyces cerevisiae for removing cadmium(II) from aqueous waste solutions. African J Microbiol Res 6: 6900-6910
- Khan Z, Hussain SZ, Rehman A, Zulfiqar S, Shakoori AR (2015) Evaluation of cadmium resistant bacterium, Klebsiella Pneumoniae, isolated from industrial wastewater for its potential use to bioremediate environmental cadmium. Pakistan J Zool 47: 1533-1543
- Yan G, Viraraghvan T (2003) Heavy-metal removal from aqueous solution by fungus Mucor rouxii. Water Res 37: 4486-4496 https://doi.org/10.1016/S0043-1354(03)00409-3
- Pattanayak B, Mittra B, Dhal NK (2015) Cadmium bioremediation by metal - resistant mutated bacteria isolated from industrial effluent. Int J Pure App Biosci 3:296-303
- Diaz-Ravina M, Baath E (2001) Response of bacterial communities preexposed to different metals and reinoculated in an unpolluted soil. Soil Biology Biochemistry 33: 241-248 https://doi.org/10.1016/S0038-0717(00)00136-X
- Diaz-Ravina M, Baath E, Frostegard (1994) Multiple heavy metal tolerance of soil bacterial communities and its measurement by a thymidine incorporation technique. Appl Environ Microbiol 60: 2238-2247 https://doi.org/10.1128/aem.60.7.2238-2247.1994
- Villegas LB, Amoroso MJ, deFigueroa LIC (2005) Copper tolerant yeasts isolated from polluted area of Argentina. J Basic Microbiol 45: 381-391 https://doi.org/10.1002/jobm.200510569
- Zafar S, Aquil F, Ahmad I (2007) Metal tolerance and biosorption potential of filamentous fungi isolated from metal contaminated agricultural soil. Bioresource Technology 98: 2557-2561 https://doi.org/10.1016/j.biortech.2006.09.051
- Jiang C, Sheng X, Qian M, Wang Q (2008) isolation and characterization of a heavy metal-resistant Burkholderia sp. from heavy metalcontaminated paddy field soil and its potential in promoting plant growth and heavy metal accumulation in metal-polluted soil. Chemosphere 72: 157-164 https://doi.org/10.1016/j.chemosphere.2008.02.006
- Rehman A, Farooq H, Hasnain S (2008) Biosorption of copper by yeast, Loddermyces elongisporus, isolated from industrial effluents: its potential use in wastewater treatment. J Basic Microbiol 48: 195-201 https://doi.org/10.1002/jobm.200700324
- Cooley RN, Helen R, Tomsett AB (1986) isolation and characterization of cadmium-resistant mutants. Curr Microbiol 13: 265-268 https://doi.org/10.1007/BF01568651
- Yamada T, Furukawa K, Hara S, Mizoguchi H (2005) Isolation of copper-tolerant mutants of sake yeast with defective peptide uptake. J Biosci Bioeng 100: 460-465 https://doi.org/10.1263/jbb.100.460
- Diaz-Ravina M, Baath E (1996) Development of metal tolerance in soil bacterial communities exposed to experimentally increased metal levels. Appl Environ Microbiol 62: 2970-2977 https://doi.org/10.1128/aem.62.8.2970-2977.1996
- Gin YH, Clark AB, Slebos RJ, Al-Rafai H, Taylor JA, Kundel TA, Resnick MA, Gordenin A (2003) Cadmium is a mutagen that acts by inhibiting mismatch repair. Nat Gen 34: 326-329 https://doi.org/10.1038/ng1172
- Serero A, Lopes J, Nicolas A, Boiteux S (2008) Yeast genes involved in cadmium tolerance: Identification of DNA replication as a target of cadmium toxicity. DNA Repair 7: 1262-1275 https://doi.org/10.1016/j.dnarep.2008.04.005
- Ruta L, Paraschivescu C, Matache M, Avramescu S, Farcassanu IC (2010) Removing heavy metals from synthetic effluents using "kamikaze" Saccharomyces cerevisiae cells. App Microbiol Biotechnol 85: 763-771 https://doi.org/10.1007/s00253-009-2266-3
- Lin X, Mou R, Cao Z, Xu P, Wu X, Zhu Z, Chen M (2016) Characterization of cadmium-resistant bacteria and their potential for reducing accumulation of cadmium in rice grains. Sci Total Environ 569-570: 97-104 https://doi.org/10.1016/j.scitotenv.2016.06.121