DOI QR코드

DOI QR Code

Baseline Model Updating and Damage Estimation Techniques for Tripod Substructure

트라이포드 하부구조물의 기저모델개선 및 결함추정 기법

  • Lee, Jong-Won (Department of Architectural Engineering, Namseoul University)
  • 이종원 (남서울대학교 건축공학과)
  • Received : 2020.03.04
  • Accepted : 2020.06.05
  • Published : 2020.06.30

Abstract

An experimental study was conducted on baseline model updating and damage estimation techniques for the health monitoring of offshore wind turbine tripod substructures. First, a procedure for substructure health monitoring was proposed. An initial baseline model for a scaled model of a tripod substructure was established. A baseline model was updated based on the natural frequencies and the mode shapes measured in the healthy state. A training pattern was then generated using the updated baseline model, and the damage was estimated by inputting the modal parameters measured in the damaged state into the trained neural network. The baseline model could be updated reasonably using the effective fixity model. The damage tests were performed, and the damage locations could be estimated reasonably. In addition, the estimated damage severity also increased as the actual damage severity increased. On the other hand, when the damage severity was relatively small, the corresponding damage location was detected, but it was more difficult to identify than the other cases. Further studies on small damage estimation and stiffness reduction quantification will be needed before the presented method can be used effectively for the health monitoring of tripod substructures.

해상풍력터빈 하부구조물은 중요한 기능의 수행, 접근성의 제약 등으로 인하여 건전성 모니터링을 통한 효과적 유지관리가 필요하다. 본 연구에서는 해상풍력터빈 트라이포드 하부구조물의 건전성 모니터링을 위한 기저모델개선 및 결함추정 기법을 실험적으로 연구한다. 우선 하부구조물 건전성 모니터링을 위한 절차를 제안한 후 이 과정을 트라이포드 하부구조물 축소모형에 대하여 적용한다. 즉, 축소모형에 대한 초기 기저모델을 수치적으로 수립한 후 모드특성을 추정하고, 건전상태 진동실험 결과로부터 구한 고유주파수와 모드형상을 기준으로 기저모델을 개선하는데, 이때 구조물의 경계조건을 고려하고 신경망기법을 이용한다. 이후, 개선된 기저모델을 이용하여 신경망의 훈련패턴을 생성하고, 손상상태 진동실험 결과로부터 구한 모드특성을 훈련된 신경망에 입력함으로써 결함을 추정한다. 유효고정부 모델을 이용하여, 건전상태에서 측정된 모드특성에 맞추어 합리적으로 기저모델을 수립할 수 있었다. 또한, 축소모형에 대한 손상실험을 수행하였는데, 4가지 손상경우에 대하여 손상을 추정한 결과, 합리적으로 손상위치를 추정할 수 있었으며, 실제 손상정도가 심해질수록 손상정도 추정치도 증가하였다. 그러나 손상정도가 상대적으로 미소한 경우, 해당 손상위치가 판정은 되지만 다른 위치와 비교하여 확실한 손상위치의 식별이 어려웠다. 향후, 이러한 미소손상 추정 및 손상정도 추정치의 강성감소에 대한 정량화 등에 대한 후속연구가 수반된다면, 해상풍력터빈 트라이포드 하부구조물의 건전성 모니터링에 제안 기법을 효과적으로 활용할 수 있을 것으로 판단된다.

Keywords

References

  1. R. Soman, M. Mieloszyk, and W. Ostachowicz, "A two-step damage assessment method based on frequency spectrum change in a scaled wind turbine tripod with strain rosettes", Marine Structures, Vol.61, pp.419-433, 2018. DOI: http://dx.doi.org/10.1016/j.marstruc.2018.06.013
  2. M. M. Luczak, J. Telega, N. Zagato, and E. Mucchi, "On the damage detection of a laboratory scale model of a tripod supporting structure by vibration-based methods", Marine Structures, Vol.64, pp.146-160, 2019. DOI: http://dx.doi.org/10.1016/j.marstruc.2018.11.002
  3. R. Soman, "Semi-automated methodology for damage assessment of a scaled wind turbine tripod using enhanced empirical mode decomposition and statistical analysis", International Journal of Fatigue, Vol.134, 105475, 2020. DOI: http://dx.doi.org/10.1016/j.ijfatigue.2020.105475
  4. M. Mieloszyk and W. Ostachowicz, "An application of structural health monitoring system based on FBG sensors to offshore wind turbine support structure model", Marine Structures, Vol.51, pp. 65-86, 2017. DOI: http://dx.doi.org/10.1016/j.marstruc.2016.10.006
  5. S. Opoka, R. Soman, M. Mieloszyk, and W. Ostachowicz, "Damage detection and localization method based on a frequency spectrum change in a scaled tripod model with strain rosettes", Marine Structures, Vol.49, pp.163-179, 2016. DOI: http://dx.doi.org/10.1016/j.marstruc.2016.05.010
  6. W. H. Hu, S. Thons, R. G. Rohrmann, S. Said, and W. Rucker, "Vibration-based structural health monitoring of a wind turbine system. Part I: Resonance phenomenon", Engineering Structures, Vol.89, pp.260-272, 2015. DOI: http://dx.doi.org/10.1016/j.engstruct.2014.12.034
  7. W. H. Hu, S. Thons, R. G. Rohrmann, S. Said, and W. Rucker, "Vibration-based structural health monitoring of a wind turbine system Part II: Environmental/operational effects on dynamic properties", Engineering Structures, Vol.89, pp.273-290, 2015. DOI: http://dx.doi.org/10.1016/j.engstruct.2014.12.035
  8. J. W. Lee, "Structural health monitoring technique for tripod support structure of offshore wind turbine", Journal of Wind Energy, Vol.9, pp.16-23, 2018. DOI: https://dx.doi.org/10.33519/kwea.2018.9.4.003
  9. R. Damiani, J. Jonkman, and G. Hayman, SubDyn User's Guide and Theory Manual, Technical Report, NREL/TP-5000-63026, National Renewable Energy Laboratory, USA. pp.14-53, 2015. DOI: https://dx.doi.org/10.2172/1225918
  10. J. Jonkman, S. Butterfield, P. Passon, T. Larsen, T. Camp, J. Nichols, J. Azcona, and A. Martinez, "Offshore code comparison collaboration within IEA wind annex XXIII: Phase II Results regarding monopile foundation modeling", Proceedings of IEA European Offshore Wind Conference, IEA, Berlin, Germany, pp. 6-7, December 2007.
  11. R. Shanker, S. Bhalla, A. Gupta, and M. P. Kumar, "Dual use of PZT patches as sensors in global dynamic and local electromechanical impedance techniques for structural health monitoring", Journal of Intelligent Material Systems and Structures, Vol.22, pp.1841-1856, 2011. DOI: http://dx.doi.org/10.1177/1045389X11414219