Abstract
As the uploading and downloading of data through the Internet is becoming more common, data including personal information are easily exposed to unauthorized users. In this study, we detect a target area in images that contain personal information, except for the background, and we protect the detected target area by using a blocking method suitable for the surrounding situation. In this method, only the target area from color image input containing personal information is segmented based on skin color. Subsequently, blurring of the corresponding area is performed in multiple stages based on the surrounding situation to effectively block the detected area, thereby protecting the personal information from being exposed. Experimental results show that the proposed method blocks the object region containing personal information 2.3% more accurately than an existing method. The proposed method is expected to be utilized in fields related to image processing, such as video security, target surveillance, and object covering.
인터넷을 통해 자료를 업로드하고 다운로드하는 것이 보편화되면서 개인 정보를 포함한 자료도 사용자들에게 쉽게 노출되고 있는 실정이다. 본 연구에서는 입력되는 여러 가지의 컬러 영상으로부터 전경이 아닌 배경 부분을 제외하고 개인 정보를 포함하고 있는 대상 영역을 강인하게 검출한 다음, 주변의 상황에 적합한 블로킹 방법으로 검출된 대상 영역을 보호하는 알고리즘을 소개한다. 본 연구에서는 먼저 받아들인 영상 데이터로부터 배경 부분을 제거하고 개인 정보를 포함하고 있는 대상 영역만을 사람의 피부 색상을 기반으로 강인하게 분할한다. 그런 다음, 주변의 상황에 적합하게 해당 영역의 블러링(blurring)을 다단계로 수행하여 검출된 대상 영역을 효과적으로 블로킹함으로써 개인 정보가 외부에 노출되는 것을 보호할 수 있다. 실험 결과에서는 제안된 방법이 입력되는 다수의 영상으로부터 개인 정보가 포함된 대상 객체 영역을 영상 블러링 방법으로 기존의 방법에 비해 2.3% 보다 정확하게 블로킹한다는 것을 보여준다. 본 연구에서 제안된 알고리즘은 영상 보안, 비디오 감시, 대상 물체 커버링 등과 같은 영상처리와 연관된 많은 유사한 분야에서 실제적으로 활용될 것으로 기대된다.