DOI QR코드

DOI QR Code

전지구 고해상도 수문모델 적용을 위한 격자유량 추정 방법 적용 연구

Application of a Method Estimating Grid Runoff for a Global High-Resolution Hydrodynamic Model

  • 류영 (국립기상과학원 현업운영개발부) ;
  • 지희숙 (국립기상과학원 현업운영개발부) ;
  • 황승언 (국립기상과학원 현업운영개발부) ;
  • 이조한 (국립기상과학원 현업운영개발부)
  • Ryu, Young (Operational Systems Development Department, National Institute of Meteorological Sciences) ;
  • Ji, Hee-Sook (Operational Systems Development Department, National Institute of Meteorological Sciences) ;
  • Hwang, Seung-On (Operational Systems Development Department, National Institute of Meteorological Sciences) ;
  • Lee, Johan (Operational Systems Development Department, National Institute of Meteorological Sciences)
  • 투고 : 2020.03.18
  • 심사 : 2020.06.05
  • 발행 : 2020.06.30

초록

In order to produce more detailed and accurate information of river discharge and freshwater discharge, global high-resolution hydrodynamic model (CaMa-Flood) is applied to an operational land surface model of global seasonal forecast system. In addition, bias correction to grid runoff for the hydrodynamic model is attempted. CaMa-Flood is a river routing model that distributes runoff forcing from a land surface model to oceans or inland seas along continentalscale rivers, which can represent flood stage and river discharge explicitly. The runoff data generated by the land surface model are bias-corrected by using composite runoff data from UNH-GRDC. The impact of bias-correction on the runoff, which is spatially resolved on 0.5° grid, has been evaluated for 1991~2010. It is shown that bias-correction increases runoff by 30% on average over all continents, which is closer to UNH-GRDC. Two experiments with coupled CaMa-Flood are carried out to produce river discharge: one using this bias correction and the other not using. It is found that the experiment adapting bias correction exhibits significant increase of both river discharge over major rivers around the world and continental freshwater discharge into oceans (40% globally), which is closer to GRDC. These preliminary results indicate that the application of CaMa-Flood as well as bias-corrected runoff to the operational global seasonal forecast system is feasible to attain information of surface water cycle from a coupled suite of atmospheric, land surface, and hydrodynamic model.

키워드

참고문헌

  1. Baumgartner, A., and E. Reichel, 1975: The world water balance: mean annual global, continental and maritime precipitation, evaporation and run-off. Elsevier Scientific Pub. Co., 179 pp.
  2. Bell, V. A., A. L. Kay, R. G. Jones, and R. J. Moore, 2007: Development of a high resolution grid-based river flow model for use with regional climate model output. Hydrol. Earth Syst. Sci., 11, 532-549, doi:10.5194/hess-11-532-2007.
  3. Best, M. J., and Coauthors, 2011: The Joint UK Land Environment Simulator (JULES), model description - part 1: energy and water fluxes. Geosci. Model Dev., 4, 677-699, doi:10.5194/gmd-4-677-2011.
  4. Bromwich, D. H., F. O. Otieno, K. M. Hines, K. W. Manning, and E. Shilo, 2013: Comprehensive evaluation of polar weather research and forecasting model performance in the Antarctic. J. Geophys. Res. Atmospheres, 118, 274-292, doi:10.1029/2012jd018139.
  5. Brown, A., S. Milton, M. Cullen, B. Golding, J. Mitchell, and A. Shelly, 2012: Unified modeling and prediction of weather and climate: A 25-year journey. Bull. Amer. Meteor. Soc., 93, 1865-1877, doi:10.1175/BAMS-D-12-00018.1.
  6. Chahine, M. T., 1992: The hydrological cycle and its influence on climate. Nature, 359, 373-380, doi:10.1038/359373a0.
  7. Chen, J., F. P. Brissette, D. Chaumont, and M. Braun, 2013: Finding appropriate bias correction methods in downscaling precipitation for hydrologic impact studies over North America. Water Resour. Res., 49, 4187-4205, doi:10.1002/wrcr.20331.
  8. Christensen, J. H., F. Boberg, O. B. Christensen, and P. Lucas-Picher, 2008: On the need for bias correction of regional climate change projections of temperature and precipitation. Geophy. Res. Lett., 35, L20709, doi:10.1029/2008GL035694.
  9. Clark, D. B., and Coauthors, 2011: The Joint UK Land Environment Simulator (JULES), model description - Part 2: Carbon fluxes and vegetation dynamics. Geosci. Model Dev., 4, 701-722, doi:10.5194/gmd-4-701-2011.
  10. Cox, P. M., 2001: Description of the "TRIFFID" Dynamic Global Vegetation Model. Hadley Centre Tech. Note 24, 16 pp.
  11. Cox, P. M., C. Huntingford, and R. J. Harding, 1998: A canopy conductance and photosynthesis model for use in a GCM land surface scheme. J. Hydrology, 212, 79-94, doi:10.1016/S0022-1694(98)00203-0.
  12. Cox, P. M., R. A. Betts, C. B. Bunton, R. L. H. Essery, P. R. Rowntree, and J. Smith, 1999: The impact of new land surface physics on the GCM simulation of climate and climate sensitivity. Climate Dyn., 15, 183-203, doi:10.1007/s003820050276.
  13. Cox, P. M., R. A. Betts, C. D. Jones, S. A. Spall, and I. J. Totterdell, 2000: Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model. Nature, 408, 184-187, doi:10.1038/35041539.
  14. Dai, A., and K. E. Trenberth, 2002: Estimates of freshwater discharge from continents: latitudinal and seasonal variations. J. Hydrometeor., 3, 660-687, doi:10.1175/1525-7541(2002)003<0660:EOFDFC>2.0.CO;2.
  15. Dickinson, R. E., A. Henderson-Sellers, P. J. Kennedy, and M. F. Wilson, 1986: Biosphere-atmosphere Transfer Scheme (BATS) for the NCAR Community Climate Model. NCAR Tech. Note NCAR/TN-275+STR, 69 pp, doi:10.5065/D6668B58.
  16. Dirmeyer P. A., and J. Shukla, 1993: Observational and modeling studies of the influence of soil moisture anomalies on atmospheric circulation (Review). In J. Shukla, Ed., Prediction of interannual climate variations, NATO ASI Series, vol 6, Springer, 1-23, doi:10.1007/978-3-642-76960-3_1.
  17. Durand, M., K. M. Andreadis, D. E. Alsdorf, D. P. Lettenmaier, D. Moller, and M. Wilson, 2008: Estimation of bathymetric depth and slope from data assimilation of swath altimetry into a hydrodynamic model. Geophys. Res. Lett., 35, L20401, doi:10.1029/2008GL034150.
  18. Ebita, A., and Coauthors, 2011: The Japanese 55-year Reanalysis "JRA-55": An Interim Report. SOLA, 7, 149-152, doi:10.2151/sola.2011-038.
  19. Ehret, U., E. Zehe, V. Wulfmeyer, K. Warrach-Sagi, and J. Liebert, 2012: HESS Opinions "Should we apply bias correction to global and regional climate model data?". Hydrol. Earth Syst. Sci., 16, 3391-3404, doi:10.5194/hess-16-3391-2012.
  20. Essery, R., M. Best, and P. Cox, 2001: MOSES 2.2 technical documentation. Hadley Centre Tech. Note 30, 30 pp.
  21. Fekete, B. M., C. J. Vorosmarty, and W. Grabs, 2000: Global composite runoff fields based on observed river discharge and simulated water balances. Report no. 22, Global Runoff Data Centre. 108 pp [Available online at https://www.bafg.de/GRDC/EN/02_srvcs/24_rprtsrs/report_22.pdf?__blob=publicationFile.].
  22. Fekete, B. M., C. J. Vorosmarty, and W. Grabs, 2002: High-resolution fields of global runoff combining observed river discharge and simulated water balances. Global Biogeochem. Cy., 16, 15-1-15-10, doi:10.1029/1999GB001254.
  23. Fekete, B. M., C. J. Vorosmarty, F. G. Hall, G. J. Collatz, B. W. Meeson, S. O. Los, E. Brown De Colstoun, and D. R. Landis, 2011: ISLSCP II UNH/GRDC Composite Monthly Runoff. ORNL DAAC, doi:10.3334/ORNLDAAC/994.
  24. Gochis, D. J., W. Yu, and D. N. Yates, 2015: The WRF-Hydro model technical description and user's guide, version 3.0. NCAR Technical Document. 120 pp.
  25. Grabs, W., T. de Couet, and J. Pauler, 1996: Freshwater fluxes from continents into the world oceans based on Data of the Global Runoff Data base. Report no. 10, Global Runoff Data Centre. 228 pp [Available online at https://www.bafg.de/GRDC/EN/02_srvcs/24_rprtsrs/report_10.pdf?__blob=publicationFile].
  26. Ham, S., S.-Y. Hong, Y. Noh, S.-I. An, Y.-H. Byun, H.-S. Kang, J. Lee, and W.-T. Kwon, 2012: Effects of freshwater runoff on a tropical pacific climate in the HadGEM2. Asia-Pac. J. Atmos. Sci., 48, 457-463, doi:10.1007/s13143-012-0041-3.
  27. Hansen, J. W., A. Challinor, A. V. M. Ines, T. Wheeler, and V. Moron, 2006: Translating climate forecasts into agricultural terms: advances and challenges. Climate Res., 33, 27-41, doi:10.7916/D8Q5303R.
  28. Harding, R. J., G. P. Weedon, H. A. J. van Lanen, and D. B. Clark, 2014: The future for global water assessment. J. Hydrology, 518, 186-193, doi:10.1016/j.jhydrol.2014.05.014.
  29. Hunke, E. C., and W. H. Lipscomb, 2010: CICE: The Los Alamos sea ice model documentation and software user's manual, Version 4.1. Tech. Rep. Los Alamos National Laboratory, LA-CC-06-012, NM 87545, 76 pp.
  30. Jacobs, S. S., H. H. Helmer, C. S. M. Doake, A. Jenkins, and R. M. Frolich, 1992: Melting of ice shelves and mass balance of Antarctica. J. Glaciol., 38, 375-387, doi:10.1017/S0022143000002252.
  31. Jenson, S. K., and J. O. Domingue, 1988: Extracting topographic structure from digital elevation data for geographic information system analysis. Photogramm. Eng. Rem. S., 54, 1593-1600.
  32. Koirala, S., Y. Hirabayashi, R. Mahendran, and S. Kanae, 2014: Global assessment of agreement among streamflow projections using CMIP5 model outputs. Environ. Res. Lett., 9, 064017, doi:10.1088/1748-9326/9/6/064017.
  33. Korzoun, V. I., A. A. Sokolov, M. I. Budyko, K. P. Voskrensensky, G. P. Kalinin, A. A. Konoplyantsev, E. S. Korotkevich, and M. I. Lvovich, 1977: Atlas of world water balance. UNESCO [Available online at https://unesdoc.unesco.org/ark:/48223/pf0000108404].
  34. Lea, D. J., I. Mirouze, M. J. Martin, R. R. King, A. Hines, D. Walters, and M. Thurlow, 2015: Assessing a new coupled data assimilation system based on the Met Office coupled atmosphere-land-ocean-sea ice model. Mon. Wea. Rev., 143, 4678-4694, doi:10.1175/MWRD-15-0174.1.
  35. Leander, R., and T. A. Buishand, 2007: Resampling of regional climate model output for the simulation of extreme river flows. J. Hydrology, 332, 487-496, doi:10.1016/j.jhydrol.2006.08.006.
  36. Li, H., J. Sheffield, and E. F. Wood, 2010: Bias correction of monthly precipitation and temperature fields from Intergovernmental Panel on Climate Change AR4 models using equidistant quantile matching. J. Geophys. Res. Atmospheres, 115, D10101, doi:10.1029/2009JD012882.
  37. Liang, X., D. P. Lettenmaier, E. F. Wood, and S. J. Burges, 1994: A simple hydrologically based model of land surface water and energy fluxes for general circulation models. J. Geophys. Res. Atmospheres, 99, 14415-14428, doi:10.1029/94JD00483.
  38. Lu, X., Q. Zhuang, Y. Liu, Y. Zhou, and A. Aghakouchak, 2016: A large-scale methane model by incorporating the surface water transport. J. Geophys. Res. Biogeo., 121, 1657-1674, doi:10.1002/2016JG003321.
  39. MacLachlan, C., and Coauthors, 2015: Global seasonal forecast system version 5 (GloSea5): a high-resolution seasonal forecast system. Q. J. Roy. Meteor. Soc., 141, 1072-1084, doi:10.1002/qj.2396.
  40. Madec, G., 2008: NEMO ocean engine. Note du Pole de Modelisation, No. 27 Institut Pierre-Simon Laplace (IPSL), 386 pp.
  41. Maraun, D., 2012: Nonstationarities of regional climate model biases in European seasonal mean temperature and precipitation sums. Geophys. Res. Lett., 39, L06706, doi:10.1029/2012GL051210.
  42. Miao, C., L. Su, Q. Sun, and Q. Duan, 2016: A nonstationary bias-correction technique to remove bias in GCM simulations. J. Geophys. Res. Atmospheres, 121, 5718-5735, doi:10.1002/2015JD024159.
  43. Oki, T., and Y. C. Sud, 1998: Design of Total Runoff Integrating Pathways (TRIP)-A global river channel network. Earth Interact., 2, 1-37, doi:10.1175/1087-3562(1998)002<0001:DOTRIP>2.3.CO;2.
  44. Oki, T., and S. Kanae, 2006: Global hydrological cycles and world water resources. Science, 313, 1068-1072, doi:10.1126/science.1128845.
  45. Oki, T., Y. Agata, S. Kanae, T. Saruhashi, D. Yang, and K. Musiake, 2001: Global assessment of current water resources using total runoff integrating pathways. Hydro. Sci. J., 46, 983-995, doi:10.1080/02626660109492890.
  46. Oki, T., D. Entekhabi, and T. I. Harrold, 2004: The global water cycle. In R. S. J. Sparks et al. Eds., The State of the Planet: Frontiers and Challenges in Geophysics, Volume 150. American Geophysical Union, Geophysical Monograph Series, 225-237, doi:10.1029/150GM18.
  47. Photiadou, C., B. van den Hurk, A. van Delden, and A. Weerts, 2016: Incorporating circulation statistics in bias correction of GCM ensembles: hydrological application for the Rhine basin. Climate Dyn., 46, 187-203, doi:10.1007/s00382-015-2578-1.
  48. Piani, C., G. P. Weedon, M. Best, S. M. Gomes, P. Viterbo, S. Hagemann, and J. O. Haerter, 2010: Statistical bias correction of global simulated daily precipitation and temperature for the application of hydrological models. J. Hydrology, 395, 199-215, doi:10.1016/j.jhydrol.2010.10.024.
  49. Sellers, P. J., Y. Mintz, Y. C. Sud, and A. Dalcher, 1986: A Simple Biosphere Model (SIB) for use within general circulation models. J. Atmos. Sci., 43, 505-531, doi:10.1175/1520-0469(1986)043<0505:ASBMFU>2.0.CO;2.
  50. Sharma, D., A. Das Gupta, and M. S. Babel, 2007: Spatial disaggregation of bias-corrected GCM precipitation for improved hydrologic simulation: Ping River basin, Thailand. Hydrol. Earth Syst. Sci., 11, 1373-1390, doi:10.5194/hess-11-1373-2007.
  51. Teng, J., N. J. Potter, F. H. S. Chiew, L. Zhang, B. Wang, J. Vaze, and J. P. Evans, 2015: How does bias correction of regional climate model precipitation affect modelled runoff? Hydrol. Earth Syst. Sci., 19, 711-728, doi:10.5194/hess-19-711-2015.
  52. Themessl, M. J., A. Gobiet, and A. Leuprecht, 2011: Empirical-statistical downscaling and error correction of daily precipitation from regional climate models. Int. J. Climatol., 31, 1530-1544, doi:10.1002/joc.2168.
  53. Trenberth, K. E., L. Smith, T. Qian, A. Dai, and J. Fasullo, 2007: Estimates of the global water budget and its annual cycle using observational and model data. J. Hydrometeor., 8, 758-769, doi:10.1175/JHM600.1.
  54. Van den Hoof, C., P. L. Vidale, A. Verhoef, and C. Vincke, 2013: Improved evaporative flux partitioning and carbon flux in the land surface model JULES: Impact on the simulation of land surface processes in temperate Europe. Agric. Forest Meteor., 181, 108-124. doi:10.1016/j.agrformet.2013.07.011
  55. Vorosmarty, C. J., B. Moore, A. L. Grace, M. P. Gildea, J. M. Melillo, B. J. Peterson, E. B. Rastetter, and P. A. Steudler, 1989: Continental scale models of water balance and fluvial transport: An application to South America. Global Biogeochem. Cy., 3, 241-265, doi:10.1029/GB003i003p00241.
  56. Vorosmarty, C. J., B. M. Fekete, M. Meybeck, and R. B. Lammers, 2000: Global system of rivers: Its role in organizing continental land mass and defining land-to-ocean linkages. Global Biogeochem. Cy., 14, 599-621, doi:10.1029/1999GB900092.
  57. Walters, D. N., and Coauthors, 2011: The Met Office Unified Model global atmosphere 3.0/3.1 and JULES global land 3.0/3.1 configurations. Geosci. Model Dev., 4, 919-941, doi:10.5194/gmd-4-919-2011.
  58. Wang, S., C. Dieterich, R. Doscher, A. Hoglund, R. Hord oir, H . E. M . Meier, P. Samuelsson, a nd S. Schimanke, 2015: Development and evaluation of a new regional coupled atmosphere-ocean model in the North Sea and Baltic Sea. Tellus A, 67, 24284, doi:10.3402/tellusa.v67.24284.
  59. Yamazaki, D., T. Oki, and S. Kanae, 2009: Deriving a global river network map and its sub-grid topographic characteristics from a fine-resolution flow direction map. Hydrol. Earth Syst. Sci., 13, 2241-2251, doi:10.5194/hess-13-2241-2009.
  60. Yamazaki, D., S. Kanae, H. Kim, and T. Oki, 2011: A physically based description of floodplain inundation dynamics in a global river routing model. Water Resour. Res., 47, W04501, doi:10.1029/2010WR009726.
  61. Yamazaki, D., H. Lee, D. E. Alsdorf, E. Dutra, H. Kim, S. Kanae, and T. Oki, 2012: Analysis of the water level dynamics simulated by a global river model: A case study in the Amazon River. Water Resour. Res., 48, W09508, doi:10.1029/2012WR011869.