DOI QR코드

DOI QR Code

Development of Biomass-Derived Anode Material for Lithium-Ion Battery

리튬이온 전지용 바이오매스 기반 음극재 개발

  • Jeong, Jae Yoon (Department of Chemical Engineering, Gyeongsang National University) ;
  • Lee, Dong Jun (Department of Chemical Engineering, Gyeongsang National University) ;
  • Heo, Jungwon (Department of Chemical Engineering, Gyeongsang National University) ;
  • Lim, Du-Hyun (Department of Chemical Engineering, Gyeongsang National University) ;
  • Seo, Yang-Gon (Department of Chemical Engineering, Gyeongsang National University) ;
  • Ahn, Jou-Hyeon (Department of Chemical Engineering, Gyeongsang National University) ;
  • Choi, Chang-Ho (Department of Chemical Engineering, Gyeongsang National University)
  • 정재윤 (경상대학교 화학공학과) ;
  • 이동준 (경상대학교 화학공학과) ;
  • 허정원 (경상대학교 화학공학과) ;
  • 임두현 (경상대학교 화학공학과) ;
  • 서양곤 (경상대학교 화학공학과) ;
  • 안주현 (경상대학교 화학공학과) ;
  • 최창호 (경상대학교 화학공학과)
  • Received : 2020.06.03
  • Accepted : 2020.06.18
  • Published : 2020.06.30

Abstract

Biomass bamboo charcoal is utilized as anode for lithium-ion battery in an effort to find an alternative to conventional resources such as cokes and petroleum pitches. The amorphous phase of the bamboo charcoal is partially converted to graphite through a low temperature graphitization process with iron oxide nanoparticle catalyst impregnated into the bamboo charcoal. An optimum catalysis amount for the graphitization is determined based on the characterization results of TEM, Raman spectroscopy, and XRD. It is found that the graphitization occurs surrounding the surface of the catalysis, and large pores are formed after the removal of the catalysis. The formation of the large pores increases the pore volume and, as a result, reduces the surface area of the graphitized bamboo charcoal. The partial graphitization of the pristine bamboo charcoal improves the discharge capacity and coulombic efficiency compared to the pristine counterpart. However, the discharge capacity of the graphitized charcoal at elevated current density is decreased due to the reduced surface area. These results indicate that the size of the catalysis formed in in-situ graphitization is a critical parameter to determine the battery performance and thus should be tuned as small as one of the pristine charcoal to retain the surface area and eventually improve the discharge capacity at high current density.

기존의 석유계부산물 기반 음극재의 대체물질을 개발하고자, 친환경적이며 가격이 저렴한 대나무 기반 1차 탄화숯을 저온 흑연화 공정을 통해 흑연으로 전환 후 음극재로 활용하였다. 저온 흑연화 공정을 위해 탄화철을 촉매로 사용하였으며, 첨가된 탄화철의 양에 따라 흑연화 정도를 X선 회절기(x-ray diffraction, XRD), 라만 분광기(raman spectroscopy), TEM (transmission electron microscopy)을 사용하여 분석 한 후 탄화철의 최적 양을 결정하였다. 가스흡착법(brunauer-emmett-teller, BET)를 사용하여 흑연화 숯의 기공특성도 분석하였다. 분석 결과 촉매 표면을 중심으로 비정질의 탄소가 흑연으로 전환되었으며, 흑연화 공정 후 촉매를 제거하기 위해 산 처리를 하는 동안 기존의 1차 탄화숯보다 크기가 큰 기공이 형성되어 상대적으로 표면적이 줄어들었다. 최적 양의 촉매를 사용하여 제조된 흑연화 숯을 음극재로 활용하여 전지성능을 분석한 결과 1차 탄화숯과 비교하여 방전용량과 충방전 효율이 증가하였다. 이는 흑연화 공정으로 비정질의 탄소가 흑연으로 전환되었기 때문으로 추정되며, 전지성능을 더욱 향상시키기 위해서는 탄화철 촉매의 크기를 최대한 작게 조절하고, 흑연화 숯의 입자크기를 균일화 하는 연구가 필요할 것으로 사료된다.

Keywords

References

  1. Kim, C. M., Kim, S. K., Chang, H. K., Kil, D. S., and Jang, H. D., "Synthesis of Si-CNT-C Composites and Their Application to Lithium Ion Battery," Korean Chem. Eng. Res., 56(1), 42-48 (2018). https://doi.org/10.9713/kcer.2018.56.1.42
  2. Scrosati, B., and Garche, J., "Lithium Batteries: Status, Prospects and Future," J. Power Sources, 195, 2419-2430 (2010). https://doi.org/10.1016/j.jpowsour.2009.11.048
  3. Scrosati, B., "History of Lithium Batteries," J. Solid State Electrochem., 15, 1623-1630 (2011). https://doi.org/10.1007/s10008-011-1386-8
  4. Courtel, M. F., Niketic, S., Duguay, D., Abu-Lebdeh, Y., and Davidson, J. I., "Water-Soluble Binders for MCMB Carbon Anodes for Lithium-Ion Batteries," J. Power Sources, 196, 2128-2134 (2011). https://doi.org/10.1016/j.jpowsour.2010.10.025
  5. Kaskhedikar, N. A., and Maier, J., "Lithium Storage in Carbon Nanostructures," Adv. Mater., 21, 2664-2680 (2009). https://doi.org/10.1002/adma.200901079
  6. Brandt, K., "Historical Development of Secondary Lithium Batteries," Solid State Ionics, 69, 173-183 (1994). https://doi.org/10.1016/0167-2738(94)90408-1
  7. Wu, Y. P., Rahm, E., and Holze, R., "Carbon Anode Materials for Lithium Ion Batteries," J. Power Sources, 114, 228-236 (2003). https://doi.org/10.1016/S0378-7753(02)00596-7
  8. Robertsa, A. D., Li, X., and Zhang, H., "Porous Carbon Spheres and Monoliths: Morphology Controlling, Pore Size Tuning and Their Applications as Li-Ion Battery Anode Materials," Chem. Soc. Rev., 43, 4341-4356 (2014). https://doi.org/10.1039/C4CS00071D
  9. Fu, L. J., Endo, K., Sekine, K., Takamura, T., Wu, Y. P., and Wu, H. Q., "Studies on Capacity Fading Mechanism of Graphite Anode for Li-Ion Battery," J. Power Sources, 162, 663-666 (2006). https://doi.org/10.1016/j.jpowsour.2006.02.108
  10. Wu, Y., Jiang, C., Wan, C., and Tsuchida, E., "Effects of Catalytic Oxidation on the Electrochemical Performance of Common Natural Graphite as an Anode Material for Lithium Ion Batteries," Electrochem. Commun., 2, 272-275 (2000). https://doi.org/10.1016/S1388-2481(00)00022-9
  11. Wissler, M., "Graphite and Carbon Powders for Electrochemical Applications," J. Power Sources, 156, 142-150 (2006). https://doi.org/10.1016/j.jpowsour.2006.02.064
  12. Fan, C.-L., and Chen, H., "Preparation, Structure, and Electrochemical Performance of Anodes from Artificial Graphite Scrap for Lithium Ion Batteries," J. Mater. Sci., 46, 2140-2147 (2011). https://doi.org/10.1007/s10853-010-5050-y
  13. Ma, C., Zhao, Y., Li, J., Song, Y., Shi, J., Guo, Q., and Liu, L., "Synthesis and Electrochemical Properties of Artificial Graphite as an Anode for High-Performance Lithium-Ion Batteries," Carbon, 64, 537-556 (2013). https://doi.org/10.1016/j.carbon.2013.07.034
  14. Kim, J. G., Kim, J. H., Song, B.-J., Lee, C. W., and Im, J. S., "Synthesis and Its Characterization of Pitch from Pyrolyzed Fuel Oil (PFO)," J. Ind. Eng. Chem., 36(25), 293-297 (2016). https://doi.org/10.1016/j.jiec.2016.02.014
  15. Thompson, E., Danks, A. E., Bourgeois, L., and Schnepp, Z., "Iron-Catalyzed Graphitization of Biomass," Green Chem., 17, 551-556 (2015). https://doi.org/10.1039/C4GC01673D
  16. Sevilla, M., and Fuertes, A. B., "Catalytic Graphitiation of Templated Mesoporous Carbons," Carbon, 44(3), 468-474 (2006). https://doi.org/10.1016/j.carbon.2005.08.019
  17. Cho, E., Kim, S., Chae, H. J., Kim, D. C., and In, M.-J., "Storage-Life Extension of Maengjong-Juk (Phyllostachys pubescens) Sap Using Heat Treatments," J. Appl. Biol. Chem., 56(2), 79-81 (2013). https://doi.org/10.3839/jabc.2013.013
  18. Demir, M., Kahveci, Z., Aksoy, B., Palapati, N. K. R., Subramanian, A., Cullinan, H. T., El-Kaderi, H. M., Harris, C. T., and Gupta, R. B., "Graphitic Biocarbon from Metal-Catalyzed Hydrothermal Carbonization of Lignin," Ind. Eng. Chem. Res., 54(43), 10731-10739 (2015). https://doi.org/10.1021/acs.iecr.5b02614
  19. Jerng, S. K., Yu, D. S., Lee, J. H., Kim, C., Yoon, S., and Chun, S.-H., "Graphitic Carbon Growth on Crystalline and Amorphous Oxide Substrates Using Molecular Beam Epitaxy," Nanoscale Res. Lett., 6(1), 565 (2011). https://doi.org/10.1186/1556-276X-6-565
  20. Lotfabad, E. M., Ding, J., Cui, K., Kohandehghan, A., Kalisvaart, W. P., Hazelton, M., and Mitlin, D., "High-Density Sodium and Lithium Ion Battery Anodes from Banana Peels", ACS Nano, 8, 7115-7129 (2014). https://doi.org/10.1021/nn502045y
  21. Xu, K., Li, Y., Xiong, J., Ou, X., Su, W., Zhong, G., and Yang, C., "Activated Amorphous Carbon With High-Porosity Derived From Camellia Pollen Grains as Anode Materials for Lithium/Sodium Ion Batteries," Front Chem., 6, 366 (2018). https://doi.org/10.3389/fchem.2018.00366
  22. Wang, H., Yu, W., Mao, N., Shi, J., and Liu, W., "Effect of Surface Modification on High-Surface-Area Carbon Nanosheets Anode in Sodium Ion Battery," Micropor. Mesopor. Mater., 227, 1-8 (2016). https://doi.org/10.1016/j.micromeso.2016.02.003