DOI QR코드

DOI QR Code

Computing Performance Comparison of CPU and GPU Parallelization for Virtual Heart Simulation

가상 심장 시뮬레이션에서 CPU와 GPU 병렬처리의 계산 성능 비교

  • Kim, Sang Hee (Dept of IT Convergence Engineering, Kumoh National Institute of Technology) ;
  • Jeong, Da Un (Dept of Medical IT Convergence Engineering, Kumoh National Institute of Technology) ;
  • Setianto, Febrian (Dept of IT Convergence Engineering, Kumoh National Institute of Technology) ;
  • Lim, Ki Moo (Dept of IT Convergence Engineering, Kumoh National Institute of Technology)
  • 김상희 (금오공과대학교 IT융복합공학과) ;
  • 정다운 (금오공과대학교 메디컬IT융합공학과) ;
  • ;
  • 임기무 (금오공과대학교 IT융복합공학과)
  • Received : 2020.05.21
  • Accepted : 2020.06.11
  • Published : 2020.06.30

Abstract

Cardiac electrophysiology studies often use simulation to predict how cardiac will behave under various conditions. To observe the cardiac tissue movement, it needs to use the high--resolution heart mesh with a sophisticated and large number of nodes. The higher resolution mesh is, the more computation time is needed. To improve computation speed and performance, parallel processing using multi-core processes and network computing resources is performed. In this study, we compared the computational speeds of CPU parallelization and GPU parallelization in virtual heart simulation for efficiently calculating a series of ordinary differential equations (ODE) and partial differential equations (PDE) and determined the optimal CPU and GPU parallelization architecture. We used 2D tissue model and 3D ventricular model to compared the computation performance. Then, we measured the time required to the calculation of ODEs and PDEs, respectively. In conclusion, for the most efficient computation, using GPU parallelization rather than CPU parallelization can improve performance by 4.3 times and 2.3 times in calculations of ODEs and PDE, respectively. In CPU parallelization, it is best to use the number of processors just before the communication cost between each processor is incurred.

Keywords

References

  1. Trayanova NA, Whole-Heart Modeling. Circ. Res. 2011;108(1):113-28. https://doi.org/10.1161/CIRCRESAHA.110.223610
  2. Niederer SA, Lumens J, Trayanova NA. Computational models in cardiology. Nat. Rev. Cardiol. 2019;16(2):100-11. https://doi.org/10.1038/s41569-018-0104-y
  3. Courtemanche M, Ramirez RJ, Nattel S. Ionic mechanisms underlying human atrial action potential properties: Insights from a mathematical model. Am. J. Physiol. - Hear. Circ. Physiol. 1998;275(1):301-21.
  4. Ten Tusscher KHWJ, Panfilov AV. Alternans and spiral breakup in a human ventricular tissue model. Am. J. Physiol. Circ. Physiol. 2006;291(3):1088-100.
  5. O'Hara T, Virag L, Varro A, Rudy Y. Simulation of the undiseased human cardiac ventricular action potential: Model formulation and experimental validation. PLoS Comput. Biol. 2011;7(5):1-29.
  6. Guccione JM, Costa KD, McCulloch AD. Finite element stress analysis of left ventricular mechanics in the beating dog heart. J. Biomech. 1995;28(10):1167-77. https://doi.org/10.1016/0021-9290(94)00174-3
  7. Butcher JC. Numerical methods for ordinary differential equations. United Kingdom: John Wiley & Sons; 2016. pp. 1-538.
  8. Chang KC, Trayanova NA. Mechanisms of arrhythmogenesis related to calcium-driven alternans in a model of human atrial fibrillation. Sci. Rep.Nature Publishing Group. 2016;6(1):1-12. https://doi.org/10.1038/s41598-016-0001-8
  9. Pathmanathan P, Gray RA. Filament Dynamics during Simulated Ventricular Fibrillation in a High-Resolution Rabbit Heart. Biomed Res. Int. 2015;20151-14.
  10. Bartocci E, Cherry EM, Glimm J, Grosu R, Smolka SA, Fenton FH. Toward real-time simulation of cardiac dynamics. Proc. 9th Int. Conf. Comput. Methods Syst. Biol. C. 2011;103-12.
  11. Adhianto L et al. HPCTOOLKIT: Tools for performance analysis of optimized parallel programs. Concurr. Comput. Pract. Exp. 2010;22(6):685-701.
  12. Vigmond EJ, Boyle PM, Leon LJ, Plank G. Near-real-time simulations of biolelectric activity in small mammalian hearts using graphical processing units. Proc. 31st Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. Eng. Futur. Biomed. EMBC 2009IEEE. 2009; 3290-3.
  13. Plank G, Liebmann M, dos Santos RW, Vigmond EJ, Haase G. Algebraic multigrid preconditioner for the cardiac bidomain model. IEEE Trans. Biomed. Eng. 2007;54(4):585-96. https://doi.org/10.1109/TBME.2006.889181
  14. Ten Tusscher KHWJ. A model for human ventricular tissue. AJP Hear. Circ. Physiol. 2004;286(4):H1573-H1589. https://doi.org/10.1152/ajpheart.00794.2003
  15. Strang G. On the Construction and Comparison of Difference Schemes Author (s): Gilbert Strang Source : SIAM Journal on Numerical Analysis , Vol . 5 , No . 3 (Sep ., 1968), pp . 506-517 Published by : Society for Industrial and Applied Mathematics Stable URL : h. SIAM J. Numer. Anal. 1968;5(3):506-17. https://doi.org/10.1137/0705041
  16. Qu Z, Garfinkel A. An advanced algorithm for solving partial differential equation in cardiac conduction. IEEE Trans. Biomed. Eng. 1999;46(9):1166-8. https://doi.org/10.1109/10.784149
  17. Nvidia C. Nvidia cuda c programming guide. Nvidia Corp; 2013. pp. 1-280.
  18. van der Vorst HA. Bi-cgstab: a fast and smoothly converging variant of Bi-CG for the solution of nonsymmetric linear systems. SIAM J. Sci. Stat. Comput. 1992;13(2):631-44. https://doi.org/10.1137/0913035
  19. Balay S et al. PETSc Users Manual: Mathematics and Computer Science Division. Terms and Conditions of Use for Oxford University Research Archive; 2001. pp. 267.
  20. Minden V, Smith B, Knepley MG. Preliminary implementation of PETSc using GPUs. Lect. Notes Earth Syst. Sci. 2013;(9783642164040):131-40.
  21. Stranden I, Lidauer M. Solving large mixed linear models using preconditioned conjugate gradient iteration. J. Dairy Sci. 1999;82(12):2779-87. https://doi.org/10.3168/jds.S0022-0302(99)75535-9
  22. Labutin IB, Surodina IV. Algorithm for sparse approximate inverse preconditioners in the conjugate gradient method. Reliab. Comput. 2013;19(1):120-6.
  23. Vigmond EJ, Dos Santos RW, Prassl AJ, Deo M, Plank G. Solvers for the cardiac bidomain equations. Prog. Biophys. Mol. Biol. Elsevier. 2008;96(1-3):3-18. https://doi.org/10.1016/j.pbiomolbio.2007.07.012
  24. Volkov V. Better performance at lower occupancy. Proceedings of the GPU technology conference. 2010;16.