DOI QR코드

DOI QR Code

Effect of Boron Nitride on Mechanical Properties, Thermal and Electrical Conductivities of Carbon Fiber Reinforced Plastics

탄소섬유강화 복합소재의 열적, 전기적, 기계적 특성에 대한 질화붕소 첨가제의 효과

  • Hong, Hyunkee (Institute of Advanced Composite Materials, Korea Institute of Science and Technology (KIST)) ;
  • Bae, Kwak Jin (Institute of Advanced Composite Materials, Korea Institute of Science and Technology (KIST)) ;
  • Yu, Jaesang (Institute of Advanced Composite Materials, Korea Institute of Science and Technology (KIST))
  • Received : 2020.03.04
  • Accepted : 2020.06.02
  • Published : 2020.06.30

Abstract

In this paper, hexagonal boron nitride (h-BN) particles were added between the sheets of prepreg, and the effect of on many properties of BN-embedded carbon fiber reinforced plastics was investigated. The amount of BN particles which corresponds with 0 to 15 wt% of total resin weight was used as an additive material. The tensile strength and the inter-laminar shear strength of BN-embedded CFRP samples were improved by maximally 13.6%, and 6.7%, respectively. The tendency changes of thermal, electrical conductivities and the morphology of cross-section of CFRPs were also observed. This study suggests the possibility of controlling the characteristics of carbon fiber-BN-epoxy composites to use for aerospace applications.

질화붕소(BN)는 높은 열전도도를 가지는 2D 형상의 부도체로 복합재료의 강화 필러로 연구되고 있는 물질이다. 본 연구에서는 판상의 육방정 질화붕소(h-BN)를 탄소섬유 다발 사이에 첨가하여 BN이 함유된 탄소섬유강화 복합소재(CFRPs)를 제조하여 BN 필러가 CFRP의 여러 물성에 어떤 영향을 주는지 탐구하였다. 사용된 프리프레그의 수지 총량의 0-15 wt%의 BN 필러가 프리프레그 층 사이에 첨가되었다. BN 필러가 첨가된 복합소재의 인장강도는 최대 13.6%, 계면간 전단응력은 최대 6.7% 증가하는 것을 관찰하였다. BN 첨가량에 따른 열전도도와 전기전도도의 변화와, BN의 첨가량에 따른 시편의 단면 형상 변화 또한 관찰되어 탄소섬유-BN-에폭시 복합소재의 물성 제어 가능성을 제시하였다.

Keywords

References

  1. Choi, H.K., Jung, H., Oh, Y., Hong, H., Yu, J., and Shin, E.S., "Interfacial Effects of Nitrogen-doped Carbon Nanotubes on Mechanical and Thermal Properties of Nanocomposites: A Molecular Dynamics Study," Composites: Part B, Vol. 167, 2019, pp. 615-620. https://doi.org/10.1016/j.compositesb.2019.03.036
  2. Jung, H., Choi, H.K., and Yu, J., "Prediction and Experimental Validation of Composite Strength by Applying Modified Micromechanics for Composites Containing Multiple Distinct Heterogeneities," Composites: Part B, Vol. 91, 2016, pp. 1-7. https://doi.org/10.1016/j.compositesb.2015.12.043
  3. Huang, X.S., "Fabrication and Properties of Carbon Fibers," Materials, Vol. 2, No. 4, 2009, pp. 2369-2403. https://doi.org/10.3390/ma2042369
  4. Summerscales, J., and Short, D., "Carbon-Fiber and Glass-Fiber Hybrid Reinforced-Plastics," Composites, Vol. 9, No. 3, 1978, pp. 157-166. https://doi.org/10.1016/0010-4361(78)90341-5
  5. Zheng, W., and Wong, S.C., "Electrical Conductivity and Dielectric Properties of PMMA/expanded Graphite Composites," Composites Science and Technology, Vol. 63, No. 2, 2003, pp. 225-235. https://doi.org/10.1016/S0266-3538(02)00201-4
  6. Abanilla, M.A., Li, Y., and Karbhari, V.M., "Durability Characterization of Wet Layup Graphite/epoxy Composites Used in External Strengthening," Composites: Part B, Vol. 37, No. 2, 2005, pp. 200-212. https://doi.org/10.1016/j.compositesb.2005.05.016
  7. Ju, Y.J., Kwon, Y.-C., and Choi, H.S., "Study on the Suitability of Composite Materials for Enhancement of Automotive Fuel Economy," Composites Research, vol. 32, No. 5, 2019, pp. 284-289. https://doi.org/10.7234/composres.2019.32.5.284
  8. Manocha, L.M., Warrier, A., Manocha, S., Sathiyamoorthy, D., and Banerjee, S., "Thermophysical Properties of Densified Pitch Based Carbon/carbon Materials - II. Bidirectional Composites," Carbon, Vol. 44, No. 3, 2006, pp. 488-495. https://doi.org/10.1016/j.carbon.2005.08.013
  9. Taylor, E.A., Herbert, M.K., Vaughan, B.A.M., and McDonnell, J.A.M., "Hypervelocity Impact on Carbon Fibre Reinforced Plastic/aluminium Honeycomb: Comparison with Whipple Bumper Shields," International Journal of Impact Engineering, Vol. 23, No. 1, 1999, pp. 883-893. https://doi.org/10.1016/S0734-743X(99)00132-3
  10. Lamontagne, C.G., Manuelpillai, G.N., Kerr, J.H., Taylor, E.A., Tennyson, R.C., and Burchell, M.J., "Projectile Density, Impact Angle and Energy Effects on Hypervelocity Impact Damage to Carbon Fibre/peek Composites," International Journal of Impact Engineering, Vol. 26, No. 1-10, 2001, pp. 381-398. https://doi.org/10.1016/S0734-743X(01)00110-5
  11. Zhao, Y.F., Jiao, Y.N., Song, L.L., Jiang, Q., and, Li, J.L., "Influence of Fabric Architecture and Weaving Parameter on the Thermal Conductivities of 3D Woven Composites," Journal of Composite Materials, Vol. 51, No. 21, 2017, pp. 3041-3051. https://doi.org/10.1177/0021998316681830
  12. Jo, K.-H., Klapper, V., Kim, H.-W., Lee, J.-W., Han, J.-W., Byun, J.-H., and Joe, C.-R., "Manufacture of 3D Textile Preform and Study on Mechanical Properties of Composites," Composites Research, Vol. 32, No. 1, 2019, pp. 65-70.
  13. Pegorin, F., Pingkarawat, K., and Mouritz, A.P., "Numerical Analysis of the Heat Transfer Properties of z-pinned Composites," Composites Communications, Vol. 8, 2018, pp. 14-18. https://doi.org/10.1016/j.coco.2018.03.002
  14. Li, M., Fang, Z.N., Wang, S.K., Gu, Y.Z., Li, Y.X., and Zhang, Z.G., "Thermal Conductivity Enhancement and Heat Transport Mechanism of Carbon Fiber z-pin Graphite Composite Structures," Composites: Part B, Vol. 172, 2019, pp. 603-611. https://doi.org/10.1016/j.compositesb.2019.05.092
  15. Kim, C.H., Sim, H.W., An, W.J., Kweon, J.H., and Choi, J.H., "Impact Characteristics of Composite Panel Stitched by I-fiber Process," Composites: Part A, Vol. 127, 2019, pp. 105644. https://doi.org/10.1016/j.compositesa.2019.105644
  16. Tapullima, J., Shim, H.W., Kweon, J.H., and Choi, J.H., "Analysis on Stitched Mode I Specimen Using Spring Elements," Composites Research, Vol. 32, No. 2, 2019, pp. 102-107. https://doi.org/10.7234/composres.2019.32.2.102
  17. Kandare, E., Khatibi, A.A., Yoo, S.H., Wang, R.Y., Ma, J., Olivier, P., Gleizes, N., and Wang, C.H., "Improving the Through-thickness Thermal and Electrical Conductivity of Carbon Fibre/epoxy Laminates by Exploiting Synergy between Graphene and Silver Nano-inclusions," Composites: Part A, Vol. 69, 2015, pp. 72-82. https://doi.org/10.1016/j.compositesa.2014.10.024
  18. Pozegic, T.R., Hamerton, I., Anguita, J.V., Tang, W., Ballocchi, P., Jenkins, P., and Silva, S.R.P., "Low Temperature Growth of Carbon Nanotubes on Carbon Fibre to Create a Highly Networked Fuzzy Fibre Reinforced Composite with Superior Electrical Conductivity," Carbon, Vol. 74, 2014, pp. 319-328. https://doi.org/10.1016/j.carbon.2014.03.038
  19. Pozegic, T.R., Anguita, J.V., Hamerton, I., Jayawardena, K.D.G.I., Chen, J.S., Stolojan, V., Ballocchi, P., Walsh, R., and Silva, S.R.P., "Multi-Functional Carbon Fibre Composites using Carbon Nanotubes as an Alternative to Polymer Sizing," Scientific Reports, Vol. 6, 2016, pp. 37334. https://doi.org/10.1038/srep37334
  20. Zhang, K.L., Feng, Y.L., Wang, F., Yang, Z.C., and Wang, J., "Two Dimensional Hexagonal Boron Nitride (2D-hBN): Synthesis, Properties and Applications," Journal of Materials Chemistry C, Vol. 5, No. 46, 2017, pp. 11992-12022. https://doi.org/10.1039/C7TC04300G
  21. Bian, X.M., Tuo, R., Yang, W., Zhang, Y.R., Xie, Q., Zha, J.W., Lin, J., and He, S.J., "Mechanical, Thermal, and Electrical Properties of BN-Epoxy Composites Modified with Carboxyl-Terminated Butadiene Nitrile Liquid Rubber," Polymers, Vol. 11, No. 10, 2019, pp. 1548-1570. https://doi.org/10.3390/polym11101548
  22. Liu, Z., Li, J.H., and Liu, X.H., "Novel Functionalized BN Nanosheets/Epoxy Composites with Advanced Thermal Conductivity and Mechanical Properties," ACS Applied Materials & Interfaces, Vol. 12, No. 5, 2020, pp. 6503-6515. https://doi.org/10.1021/acsami.9b21467