참고문헌
- I. Aktas, A. Baricz, and H. Orhan, Bounds for radii of starlikeness and convexity of some special functions, Turkish J. Math. 42 (2018), no. 1, 211-226. https://doi.org/10.3906/mat-1610-41
- I. Aktas, A. Baricz, and N. Yagmur, Bounds for the radii of univalence of some special functions, Math. Inequal. Appl. 20 (2017), no. 3, 825-843. https://doi.org/10.7153/mia-20-52
- I. Aktas, E. Toklu, and H. Orhan, Radii of uniform convexity of some special functions, Turkish J. Math. 42 (2018), no. 6, 3010-3024. https://doi.org/10.3906/mat-1806-43
- D. Bansal and J. K. Prajapat, Certain geometric properties of the Mittag-Leffler functions, Complex Var. Elliptic Equ. 61 (2016), no. 3, 338-350. https://doi.org/10.1080/17476933.2015.1079628
- A. Baricz, D. K. Dimitrov, H. Orhan, and N. Yagmur, Radii of starlikeness of some special functions, Proc. Amer. Math. Soc. 144 (2016), no. 8, 3355-3367. https://doi.org/10.1090/proc/13120
- A. Baricz, P. A. Kupan, and R. Szasz, The radius of starlikeness of normalized Bessel functions of the first kind, Proc. Amer. Math. Soc. 142 (2014), no. 6, 2019-2025. https://doi.org/10.1090/S0002-9939-2014-11902-2
-
A. Baricz, H. Orhan, and R. Szasz, The radius of
$\alpha$ -convexity of normalized Bessel functions of the first kind, Comput. Methods Funct. Theory 16 (2016), no. 1, 93-103. https://doi.org/10.1007/s40315-015-0123-1 - A. Baricz and S. Ponnusamy, Starlikeness and convexity of generalized Bessel functions, Integral Transforms Spec. Funct. 21 (2010), no. 9, 641-653. https://doi.org/10.1080/10652460903516736
- A. Baricz and A. Prajapati, Radii of starlikeness and convexity of generalized Mittag-Leffler functions, Math. Commun. in press.
- A. Baricz and R. Szasz, The radius of convexity of normalized Bessel functions of the first kind, Anal. Appl. (Singap.) 12 (2014), no. 5, 485-509. https://doi.org/10.1142/S0219530514500316
- A. Baricz, E. Toklu, and E. Kadioglu, Radii of starlikeness and convexity of Wright functions, Math. Commun. 23 (2018), no. 1, 97-117.
- A. Baricz and N. Yagmur, Geometric properties of some Lommel and Struve functions, Ramanujan J. 42 (2017), no. 2, 325-346. https://doi.org/10.1007/s11139-015-9724-6
- R. Bharati, R. Parvatham, and A. Swaminathan, On subclasses of uniformly convex functions and corresponding class of starlike functions, Tamkang J. Math. 28 (1997), no. 1, 17-32. https://doi.org/10.5556/j.tkjm.28.1997.4330
- N. Bohra and V. Ravichandran, Radii problems for normalized Bessel functions of first kind, Comput. Methods Funct. Theory 18 (2018), no. 1, 99-123. https://doi.org/10.1007/s40315-017-0216-0
- D. A. Brannan and W. E. Kirwan, On some classes of bounded univalent functions, J. Lond. Math. Soc. s2-1 (1969), no. 1, 431-443. https://doi.org/10.1112/jlms/s2-1.1.431
- R. K. Brown, Univalence of Bessel functions, Proc. Amer. Math. Soc. 11 (1960), 278-283. https://doi.org/10.2307/2032969
-
M. Caglar, E. Deniz, and R. Szasz, Radii of
$\alpha$ -convexity of some normalized Bessel functions of the first kind, Results Math. 72 (2017), no. 4, 2023-2035. https://doi.org/10.1007/s00025-017-0738-9 - E. Deniz and R. Szasz, The radius of uniform convexity of Bessel functions, J. Math. Anal. Appl. 453 (2017), no. 1, 572-588. https://doi.org/10.1016/j.jmaa.2017.03.079
- P. L. Duren, Univalent functions, Grundlehren der Mathematischen Wissenschaften, 259, Springer-Verlag, New York, 1983.
- M. M. Dzhrbashyan, Integral transforms and representations of functions in the complex domain, (in Russian), Nauka, Moscow, 1966.
- A. Gangadharan, V. Ravichandran, and T. N. Shanmugam, Radii of convexity and strong starlikeness for some classes of analytic functions, J. Math. Anal. Appl. 211 (1997), no. 1, 301-313. https://doi.org/10.1006/jmaa.1997.5463
- A. W. Goodman, On uniformly convex functions, Ann. Polon. Math. 56 (1991), no. 1, 87-92. https://doi.org/10.4064/ap-56-1-87-92
- S. Kanas and A. Wisniowska, Conic regions and k-uniform convexity, J. Comput. Appl. Math. 105 (1999), no. 1-2, 327-336. https://doi.org/10.1016/S0377-0427(99)00018-7
- S. Kanas and A. Wisniowska, Conic domains and starlike functions, Rev. Roumaine Math. Pures Appl. 45 (2000), no. 4, 647-657.
- S. Kanas and T. Yaguchi, Subclasses of k-uniformly convex and starlike functions defined by generalized derivative. I, Indian J. Pure Appl. Math. 32 (2001), no. 9, 1275-1282.
- E. Kreyszig and J. Todd, The radius of univalence of Bessel functions. I, Illinois J. Math. 4 (1960), no. 1, 143-149. http://projecteuclid.org/euclid.ijm/1255455740 https://doi.org/10.1215/ijm/1255455740
- H. Kumar and A. M. Pathan, On the distribution of non-zero zeros of generalized Mittag-Leffler functions, Int. J. Eng. Res. Appl. 6, (2016), no.10, 66-71.
- E. P. Merkes and W. T. Scott, Starlike hypergeometric functions, Proc. Amer. Math. Soc. 12 (1961), 885-888. https://doi.org/10.2307/2034382
-
G. M. Mittag Leffler, Sur la nouvelle fonction
$E_{\alpha}(x)$ , C. R. Acad. Sci. Paris 137 (1903), 554-558. - P. T. Mocanu, Une propriete de convexite generalisee dans la theorie de la representation conforme, Mathematica (Cluj) 11(34) (1969), 127-133.
-
P. T. Mocanu and M. O. Reade, The radius of
$\alpha$ -convexity for the class of starlike univalent functions,$\alpha$ -real, Proc. Amer. Math. Soc. 51 (1975), no. 2, 395-400. https://doi.org/10.2307/2040329 -
I. V. Ostrovskii and I. N. Peresyolkova, Nonasymptotic results on distribution of zeros of the function
$E_{\rho}(z,{\mu})$ , Anal. Math. 23 (1997), no. 4, 283-296. https://doi.org/10.1007/BF02789843 - I. N. Peresyolkova, On distribution of zeros of generalized functions of Mittag-Leffler's type, Mat. Stud. 13 (2000), no. 2, 157-164.
- A. Yu. Popov and A. M. Sedletskii, Distribution of roots of Mittag-Leffler functions, J. Math. Sci. (N.Y.) 190 (2013), no. 2, 209-409; translated from Sovrem. Mat. Fundam. Napravl. 40 (2011), 3-171. https://doi.org/10.1007/s10958-013-1255-3
- T. R. Prabhakar, A singular integral equation with a generalized Mittag Leffler function in the kernel, Yokohama Math. J. 19 (1971), 7-15.
- J. K. Prajapat, S. Maharana, and D. Bansal, Radius of starlikeness and Hardy space of Mittag-Leffler functions, Filomat 32 (2018), no. 18, 6475-6486. https://doi.org/10.2298/FIL1818475P
- V. Ravichandran, On uniformly convex functions, Ganita 53 (2002), no. 2, 117-124.
- F. Ronning, Uniformly convex functions and a corresponding class of starlike functions, Proc. Amer. Math. Soc. 118 (1993), no. 1, 189-196. https://doi.org/10.2307/2160026
-
S. Topkaya, E. Deniz, and M. Caglar, Radii of the
$\beta$ uniformly convex of order$\alpha$ of Lommel and Struve functions, arXiv:1710.09715v2 [math.CV] - H. S. Wilf, The radius of univalence of certain entire functions, Illinois J. Math. 6 (1962), no. 2, 242-244. http://projecteuclid.org/euclid.ijm/1255632321 https://doi.org/10.1215/ijm/1255632321
-
A. Wiman, Uber die Nullstellen der Funktionen
$E^a(x)$ , Acta Math. 29 (1905), no. 1, 217-234. https://doi.org/10.1007/BF02403204