References
- L. Adleman, K. Manders, and G. Miller, On taking roots in finite fields, in 18th Annual Symposium on Foundations of Computer Science (Providence, R.I., 1977), 175-178, IEEE Comput. Sci., Long Beach, CA, 1977.
- A. O. L. Atkin, Probabilistic primality testing, summary by F. Morain, Inria Research Report 1779 (1992), 159-163,
- D. Bernstein, Faster square root in annoying finite field, Preprint, Available from http://cr.yp.to/papers/sqroot.pdf, 2001.
- Z. Cao, Q. Sha, and X. Fan, Adleman-Manders-Miller root extraction method revisited, in Information security and cryptology, 77-85, Lecture Notes in Comput. Sci., 7537, Springer, Heidelberg, 2012. https://doi.org/10.1007/978-3-642-34704-7_6
- G. H. Cho, N. Koo, E. Ha, and S. Kwon,, New cube root algorithm based on the third order linear recurrence relations in finite fields, Des. Codes Cryptogr. 75 (2015), no. 3, 483-495. https://doi.org/10.1007/s10623-013-9910-8
- M. Cipolla, Un metodo per la risolutione della congruenza di secondo grado, Rendiconto dell'Accademia Scienze Fisiche e Matematiche, Napoli, Ser. 3, 9 (1903), 154-163.
- I. B. Damgard and G. S. Frandsen, Efficient algorithms for the gcd and cubic residuosity in the ring of Eisenstein integers, J. Symbolic Comput. 39 (2005), no. 6, 643-652. https://doi.org/10.1016/j.jsc.2004.02.006
- K. J. Giuliani and G. Gong, A new algorithm to compute remote terms in special types of characteristic sequences, in Sequences and their applications-SETA 2006, 237-247, Lecture Notes in Comput. Sci., 4086, Springer, Berlin, 2006. https://doi.org/10.1007/11863854_20
- G. Gong and L. Harn, Public-key cryptosystems based on cubic finite field extensions, IEEE Trans. Inform. Theory 45 (1999), no. 7, 2601-2605. https://doi.org/10.1109/18.796413
- F. Kong, Z. Cai, J. Yu, and D. Li, Improved generalized Atkin algorithm for computing square roots in finite fields, Inform. Process. Lett. 98 (2006), no. 1, 1-5. https://doi.org/10.1016/j.ipl.2005.11.015
- D. H. Lehmer, Computer technology applied to the theory of numbers, in Studies in Number Theory, 117-151, Math. Assoc. Amer. (distributed by Prentice-Hall, Englewood Cliffs, N.J.), 1969.
- R. Lidl and H. Niederreiter, Finite fields, second edition, Encyclopedia of Mathematics and its Applications, 20, Cambridge University Press, Cambridge, 1997.
- S. Lindhurst, An analysis of Shanks's algorithm for computing square roots in finite fields, in Number theory (Ottawa, ON, 1996), 231-242, CRM Proc. Lecture Notes, 19, Amer. Math. Soc., Providence, RI, 1999.
- A. J. Menezes, I. F. Blake, X. Gao, R. C. Mullin, S. A. Vanstone, and T. Yaghoobian, Applications of finite fields, The Kluwer International Series in Engineering and Computer Science, 199, Kluwer Academic Publishers, Boston, MA, 1993. https://doi.org/10.1007/978-1-4757-2226-0
- S. Muller, On the computation of square roots in finite fields, Des. Codes Cryptogr. 31 (2004), no. 3, 301-312. https://doi.org/10.1023/B:DESI.0000015890.44831.e2
- NIST, Digital Signature Standard, Federal Information Processing Standard 186-3, National Institute of Standards and Technology, Available from http://csrc.nist.gov/publications/fips/, 2000.
- D. Shanks, Five number-theoretic algorithms, in Proceedings of the Second Manitoba Conference on Numerical Mathematics (Univ. Manitoba, Winnipeg, Man., 1972), 51-70. Congressus Numerantium, VII, Utilitas Math., Winnipeg, MB, 1973.
- I. Shparlinski, Finite fields: Theory and computation, Springer, 1999.
- A. Tonelli, Bemerkung uber die Auflosung quadratischer Congruenzen, Gottinger Nachrichten (1891), 344-346.