DOI QR코드

DOI QR Code

Effects of Heat Inputs on Phase Transformation and Resistance to Intergranular Corrosion of F316 Austenitic Stainless Steel

F316 오스테나이트 스테인리스강의 상변태 및 입계부식저항성에 미치는 입열의 영향

  • Jeong, Gyue-Seog (Mechanical & Plant Design Engineering Department, KEPCO Engineering & Construction Company) ;
  • Lee, In-Sung (Research Institute of Iron and Steel, Engineering Research Park, Yonsei University) ;
  • Kim, Soon-Tae (Research Institute of Iron and Steel, Engineering Research Park, Yonsei University)
  • 정규석 (KEPCO E&C, 기계배관) ;
  • 이인성 (연세대학교 공학연구원, 철강연구소) ;
  • 김순태 (연세대학교 공학연구원, 철강연구소)
  • Received : 2020.05.19
  • Accepted : 2020.06.10
  • Published : 2020.06.30

Abstract

To elucidate the effect of heat inputs on phase transformation and resistance to intergranular corrosion of F316 austenitic stainless steel (ASS), thermodynamic calculations of each phase and time-temperature-transformation diagram were conducted using JMaPro simulation software, oxalic acid etch test, double-loop electrochemical potentiokinetic reactivation test (DL-EPR), field emission scanning electron microscopy with energy dispersive spectroscopy, and transmission electron microscopy analyses of Cr carbide (Cr23C6), austenite phase and ferrite phase. F316 ASS containing a relatively low C content of 0.043 wt% showed a slightly sensitized microstructure (acceptably dual structure) due to a small amount of Cr carbide precipitated at heat affected zone irrespective of heat inputs. Based on results of DL-EPR test, although heat input was increased, the ratio of Ir to Ia was only increased very slightly due to a slight sensitization. Therefore, heat inputs have little influences on resistance to intergranular corrosion of F316 austenitic stainless steel containing 0.043 wt% C.

Keywords

References

  1. V. Moura, A. Y. Kina, S. S. M. Tavares, L. D. Lima, and F. B. Mainier, J. Mater. Sci., 43, 536 (2008). https://doi.org/10.1007/s10853-007-1785-5
  2. S. Yang, Z. J. Wang, H. Kokawa, and Y. S. Sato, J. Mater. Sci., 42, 847 (2007). https://doi.org/10.1007/s10853-006-0063-2
  3. S. M. Bruemmer, B. W. Arey, and L. A. Charlot, Corrosion, 48, 42 (1992). https://doi.org/10.5006/1.3315917
  4. M. H. Lewis and B. Hattersley, Acta Metall., 13, 1159 (1965). https://doi.org/10.1016/0001-6160(65)90053-2
  5. R. Singh, S. G. Chowdhury, B. R. Kumar, S. K. Das, P. K. De, and I. Chattoraj, Scripta Mater., 57, 185 (2007). https://doi.org/10.1016/j.scriptamat.2007.04.017
  6. G. H. Aydogdu and M. K. Aydinol, Corros. Sci., 48, 3565 (2006). https://doi.org/10.1016/j.corsci.2006.01.003
  7. D. N. Wasnik, V. Kain, I. Samajdar, B. Verlinden, and P. K. De, Acta Mater., 50, 4587 (2002). https://doi.org/10.1016/S1359-6454(02)00306-3
  8. Y. Ustinovshikov, A. Ruts, O. Bannykh, V. Blinov, and M. Kostina, Mater. Sci. Eng. A, 262, 82 (1999). https://doi.org/10.1016/S0921-5093(98)01015-6
  9. F. R. Beckitt and B. R. Clark, Acta Metall., 15, 113 (1967). https://doi.org/10.1016/0001-6160(67)90159-9
  10. L. K. Singhal and J. W. Martin, Acta Metall., 15, 1603 (1967). https://doi.org/10.1016/0001-6160(67)90134-4
  11. P. R. Howell, J. V. Bee, and R. W. K. Honeycombe, Metall. Trans. A, 10, 1213 (1979). https://doi.org/10.1007/BF02811976
  12. R. A. Ricks, P. R. Howell, and R. W. K. Honeycombe, Metall. Trans. A, 10, 1049 (1979). https://doi.org/10.1007/BF02811651
  13. T. Thorvaldsson and G. L. Dunlop, J. Mater. Sci., 18, 793 (1983). https://doi.org/10.1007/BF00745578
  14. H. U. Hong, B. S. Rho, and S. W. Nam, Mater. Sci. Eng., A, 318, 285 (2001). https://doi.org/10.1016/S0921-5093(01)01254-0
  15. G. S. Was and R. M. Kruger, Acta Metall., 33, 841 (1985). https://doi.org/10.1016/0001-6160(85)90108-7
  16. E.-J. Oh, J.-H. Lee, S.-W. Cho, W.-G. Yi, and K.-W. Nam, JWJ, 37, 322 (2019). https://doi.org/10.5781/JWJ.2019.37.4.6
  17. ASTM A262, Practice A, Standard Practices for Detecting Susceptibility to Intergranular Attack in Austenitic Stainless Steels-Oxalic Acid Etch Test for Classification of Etch Structures of Austenitic Stainless Steels (2001).
  18. ISO 12732, Corrosion of Metals and Alloys-Electrochemical Potentiokinetic Reactivation Measurement using the Double Loop Method (Based on Cihal's Method) (2006).
  19. B. H. Jung and M. G. Kim, Journal of the Korean Society of Marine Engineering, 30, 709 (2006). http://www.koreascience.or.kr/article/JAKO200604623495510.page