DOI QR코드

DOI QR Code

Alloy 600의 결정립계 산화에 대한 표면 변형의 영향

Effects of Surface Deformation on Intergranular Oxidation of Alloy 600

  • 하동욱 (한국원자력연구원 재료안전기술개발부) ;
  • 임연수 (한국원자력연구원 재료안전기술개발부) ;
  • 김동진 (한국원자력연구원 재료안전기술개발부)
  • Ha, Dong Woog (Materials Safety Technology Development Division, Korea Atomic Energy Research Institute) ;
  • Lim, Yun Soo (Materials Safety Technology Development Division, Korea Atomic Energy Research Institute) ;
  • Kim, Dong Jin (Materials Safety Technology Development Division, Korea Atomic Energy Research Institute)
  • 투고 : 2020.03.30
  • 심사 : 2020.05.25
  • 발행 : 2020.06.30

초록

Immersion tests of Alloy 600 were conducted in simulated primary water environments of a pressurized water reactor at 325 ℃ for 10, 100, and 1000 h to obtain insight into effects of surface deformation on internal and intergranular (IG) oxidation behavior through precise characterization using various microscopic equipment. Oxidized samples after immersion tests were covered with polyhedral and filamentous oxides. It was found that oxides were abundant in mechanically ground (MG) samples the most. The number density of surface oxides increased with time irrespective of the method of surface finish. IG oxidation occurred in mechanically polished (MP) and chemically polished (CP) samples with thin internal oxidation layers. However, IG oxidation was suppressed with relatively thick internal oxidation layers in MG samples compared to MP and CP samples, suggesting that MG treatment could increase resistance to primary water stress corrosion cracking (PWSCC) from the standpoint of IG oxidation. As a result, appropriate surface treatment for Alloy 600 could prevent oxygen diffusion into grain boundaries, inhibit IG oxidation, and finally induce its high PWSCC resistance.

키워드

참고문헌

  1. W. Bamford and J. Hall, Proc. 11th Int'l Conf., p. 1071, Stevenson, WA (2003).
  2. W. Bamford and J. Hall, Proc. 12th Int'l Conf., p. 959, Salt Lake City, Utah (2005).
  3. W. Bamford, G. G. Elder, R. Perdue, and B. Newton, Proc. 13th Int'l Conf., Whistler, British Columbia (2007).
  4. P. M. Scott and M. Le Calvar, Proc. 6th Int'l Conf., p. 657, San Diego, Calif (1993).
  5. H. Dugdale, D. E. J. Armstrong, E. Tarleton, S. G. Roberts, and S. Lozano-Perez, Acta Mater., 61, 4707 (2013). https://doi.org/10.1016/j.actamat.2013.05.012
  6. L. Volpe, M. G. Burke, and F. Scenini, Acta Mater., 186, 454 (2020). https://doi.org/10.1016/j.actamat.2020.01.020
  7. Z. Shen, K. Chen, D. Tweddle, G. He, K. Arioka, and S. Lozano-Perez, Corros. Sci., 152, 82 (2019). https://doi.org/10.1016/j.corsci.2019.03.014
  8. G. Bertali, F. Scenini, and M. G. Burke, Corros. Sci., 100, 474 (2015). https://doi.org/10.1016/j.corsci.2015.08.010
  9. S. M. Payne and P. Mcintyre, Corrosion, 44, 314 (1988). https://doi.org/10.5006/1.3583943
  10. Y. S. Lim, H. P. Kim, and S. S. Hwang, Corros. Sci. Tech., 11, 141 (2012). https://doi.org/10.14773/cst.2012.11.4.141
  11. Y. S. Lim, D. J. Kim, S. S. Hwang, H. P. Kim, and S. W. Kim, Mater. Char., 96, 28 (2014). https://doi.org/10.1016/j.matchar.2014.07.008
  12. Y. S. Lim, H. P. Kim, H. D. Cho, and H. H. Lee, Mater. Char., 60, 1496 (2009) https://doi.org/10.1016/j.matchar.2009.08.005
  13. D. B. Williams and C.B. Carter, Transmission Electron Microscopy IV Spectroscopy, 1st ed., Plenum Press, New York (1996).
  14. ASTM E112-13, Standard Test Methods for Determining Average Grain Sizes, West Conshohocken, PA, ASTM International (2013).
  15. C. R. Barrett, W. D. Nix, and A. S. Tetelman, The Principles of Engineering Materials, p. 168, Prentice-Hall Inc., Englewood Cliffs, New Jersey (1973).
  16. Y. S. Lim, D. J. Kim, S. W. Kim, and H. P. Kim, Nucl. Eng. Technol., 51, 228 (2019). https://doi.org/10.1016/j.net.2018.09.011
  17. T. M. Angeliu and G. S. Was, Metall. Trans. A, 21A, 2097 (1990).
  18. P. Combrade, P.M. Scott, M. Foucault, E. Andrieu and P. Marcus, Proc. 12th Int'l Conf., on Environmental Degradation of Materials in Nuclear Power Systems-Water Reactor, p. 883, Salt Lake City, Utah (2005).
  19. M. J. Olszta, D.K. Schreiber, M. B. Toloczko, and S. M. Bruemmer, Proc. 16th Int'l Conf., on Environmental Degradation of Materials in Nuclear Power Systems-Water Reactor, p. 1805, Asheville, North Carolina (2013).
  20. J. Robertson, Corros. Sci., 32, 443 (1991). https://doi.org/10.1016/0010-938X(91)90125-9
  21. S. Lozano-Perez, D. W. Saxey, T. Yamada, and T. Terachi, Scr. Mater., 62, 855 (2010). https://doi.org/10.1016/j.scriptamat.2010.02.021
  22. Y. Han, J. Mei, Q. Peng, E. H. Han, and W. Ke, Corros. Sci., 98, 72 (2015). https://doi.org/10.1016/j.corsci.2015.05.026
  23. Y. S. Lim, D. J. Kim, S. W. Kim, S. S. Hwang, and H. P. Kim, Mater. Char., 157, 109922 (2019). https://doi.org/10.1016/j.matchar.2019.109922
  24. J. Panter, B. Viguier, J. M. Cloue, M. Foucault, P. Combrade, and E. Andrieu, J. Nucl. Mater., 348, 213 (2006). https://doi.org/10.1016/j.jnucmat.2005.10.002
  25. S. M. Bruemmer, L. A. Charlot, and C. H. Henager, Corrosion, 44, 782 (1988). https://doi.org/10.5006/1.3584948
  26. Y. Han, E. H. Han, Q. Peng, and W. Ke, Corros. Sci., 121, 1 (2017). https://doi.org/10.1016/j.corsci.2017.03.004
  27. F. Scenini, R. C. Newman, R. A. Cottis, and R. J. Jacko, Corrosion, 64, 824 (2008). https://doi.org/10.5006/1.3279916
  28. Z. Shen, K. Chen, D. Tweddle, G. He, K. Arioka, and S. Lozano-Perez, Corros. Sci. 152, 82 (2019). https://doi.org/10.1016/j.corsci.2019.03.014