DOI QR코드

DOI QR Code

Failure Analysis on Localized Corrosion of Heat Transport Pipe in District Heating System

지역난방 열수송관 국부 부식 파손 분석

  • Kim, You Sub (Department of Materials Science and Engineering, Chungnam National University) ;
  • Chae, Hobyung (Department of Materials Science and Engineering, Chungnam National University) ;
  • Kim, Woo Cheol (R & D Institute, Korea District Heating Corp.) ;
  • Jeong, Joon Cheol (R & D Institute, Korea District Heating Corp.) ;
  • Kim, Heesan (Department of Materials Science and Engineering, Hongik University) ;
  • Kim, Jung-Gu (School of Advanced Materials Science and Engineering, Sungkyunkwan University) ;
  • Lee, Soo Yeol (Department of Materials Science and Engineering, Chungnam National University)
  • 김유섭 (충남대학교 신소재공학과) ;
  • 채호병 (충남대학교 신소재공학과) ;
  • 김우철 (한국지역난방공사 미래개발원) ;
  • 정준철 (한국지역난방공사 미래개발원) ;
  • 김희산 (홍익대학교 재료공학과) ;
  • 김정구 (성균관대학교 신소재공학부) ;
  • 이수열 (충남대학교 신소재공학과)
  • Received : 2020.04.08
  • Accepted : 2020.05.19
  • Published : 2020.06.30

Abstract

In this study, a corrosion failure analysis of a heat transport pipe was conducted, as the result of a pinhole leak. Interestingly, the corrosion damage occurred externally in the pipeline, resulting in severe thickness reduction near the seam line. Also, while a stable magnetite protective film formed on the inner surface, the manganese oxide formation occurred only on the outer surface. The interior and exterior of the pipe were composed of ferrite and pearlite. The large manganese sulfide and alumina inclusions were found near the seam line. In addition, the manganese sulfide inclusions resulted in grooving corrosion, which progressed in the seam line leading to the reduction in the thickness, followed by the exposure of the alumina in the matrix to the outer surface. To note, the corrosion was accelerated by pits generated from the boundaries separating the inclusions from the matrix, which resulted in pinhole leaks and water loss.

Keywords

References

  1. M. Hong, J. Cho, M. J. Song, W. C. Kim, T. B. Ha, and S. Y. Lee, Corros. Sci. Tech., 17, 287 (2018). https://doi.org/10.14773/cst.2018.17.6.287
  2. Y. Kim, H. Chae, M. Hong, M. J. Song, J. Cho, W. C. Kim, T. B. Ha, and S. Y. Lee, Corros. Sci. Tech., 18, 55 (2019). https://doi.org/10.14773/cst.2019.18.2.55
  3. M. Hong, H. Chae, Y. Kim, M. J. Song, J. M. Cho, W. C. Kim, T. B. Ha, and S. Y. Lee, Korean J. Mater. Res., 29, 11 (2019). https://doi.org/10.3740/MRSK.2019.29.1.11
  4. R. Ebara, F. Tanaka, and M. Kawasaki, Eng. Failur. Analy., 33, 29 (2013). https://doi.org/10.1016/j.engfailanal.2013.04.007
  5. M. Hong, H. Chae, W. C. Kim, J. G. Kim, H. Kim, and S. Y. Lee, Met. Mater. Int., 25, 1191 (2019). https://doi.org/10.1007/s12540-019-00267-6
  6. Y. S. Chang, S. W. Jung, S. M. Lee, J. B. Choi, and Y. J. Kim, Appl. Therm. Eng., 27, 2524 (2007). https://doi.org/10.1016/j.applthermaleng.2007.02.001
  7. H. Lund, B. Moller, B. V. Mathiesen, and A. Dyrelund, Energy, 35, 1381 (2010). https://doi.org/10.1016/j.energy.2009.11.023
  8. P. A. Ostergaard and H. Lund, Appl. Energ., 88, 479 (2011). https://doi.org/10.1016/j.apenergy.2010.03.018
  9. H. Gadd and S. Werner, Appl. Energ., 106, 47 (2013). https://doi.org/10.1016/j.apenergy.2013.01.030
  10. D. Connolly, H. Lund, B. V. Mathiesen, S. Werner, B. Moller, U. Persson, T. Boermans, D. Trier, P. A. Ostergaard, and S. Nielsen, Energ. Policy, 65, 475 (2014). https://doi.org/10.1016/j.enpol.2013.10.035
  11. KS D 3562, Carbon Steel Pipes for Pressure Service (2019).
  12. H. Chae, H. Wang, M. Hong, W. C. Kim, J. G. Kim, H. Kim, and S. Y. Lee, Met. Mater. Int., 26, 989 (2020). https://doi.org/10.1007/s12540-019-00386-0
  13. C. Kato, Y. Otoguro, S. Kado, and Y. Hisamatsu, Corros. Sci., 18, 61 (1978). https://doi.org/10.1016/S0010-938X(78)80076-6
  14. S. J. Luo and R. Wang, Corros. Sci., 87, 517 (2014). https://doi.org/10.1016/j.corsci.2014.06.044
  15. B. Kim, S. Kim, and H. Kim, Adv. Mater. Sci. Eng., 2018, 13, Article ID 7638274 (2018). https://doi.org/10.1155/2018/7638274
  16. R. M. Cornell, Clay Minerals, 23, 329 (1988). https://doi.org/10.1180/claymin.1988.023.3.10
  17. R. M. Cornell and R. Giovanoli, Polyhedron, 7, 385 (1988). https://doi.org/10.1016/S0277-5387(00)80487-8
  18. Z. Bi, R. Wang, and X. Jing, Corros. Sci., 57, 67 (2012). https://doi.org/10.1016/j.corsci.2011.12.033
  19. P. C. Chung, Y. Ham, S. Kim, J. Lim, and C. Lee, Mater. Des., 34, 685 (2012). https://doi.org/10.1016/j.matdes.2011.05.027
  20. M. Rahman, S. P. Murugan, C. Ji, Y. J. Cho, J. -Y. Cheon, and Y. -D. Park, Corros. Sci. Tech., 17, 109 (2018). https://doi.org/10.14773/cst.2018.17.3.109
  21. Q. Meng, G.S. Frankel, H. O. Colijn, and S. H. Goss, Nature, 424, 389 (2003). https://doi.org/10.1038/424389b
  22. K. Oikawa, H. Ohtani, K. Ishida, and T. Nishizawa, ISIJ Int., 35, 402 (1995). https://doi.org/10.2355/isijinternational.35.402
  23. C. Liu, R. I. Revilla, D. Zhang, Z. Liu, A. Lutz, F. Zhang, T. Zhao, H. Ma, X. Li, and H. Terryn, Corros. Sci., 138, 96 (2018). https://doi.org/10.1016/j.corsci.2018.04.007
  24. Q. Liu, S. Yang, M. Zhao, L. Zhu, and J. Li, Metals, 7, 347 (2017). https://doi.org/10.3390/met7090347
  25. C. Liu, X. Cheng, Z. Dai, R. Liu, Z. Li, L. Cui, M. Chen, and L. Ke, Materials, 11, 2277 (2018). https://doi.org/10.3390/ma11112277