DOI QR코드

DOI QR Code

Characterization of Yeast and Bacterial Type Strains with Food and Agricultural Applications by MALDI-TOF Mass Spectrometry Biotyping

  • Harnpicharnchai, Piyanun (National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency) ;
  • Jaresitthikunchai, Janthima (National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency) ;
  • Seesang, Mintra (National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency) ;
  • Jindamorakot, Sasitorn (National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency) ;
  • Tanapongpipat, Sutipa (National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency) ;
  • Ingsriswang, Supawadee (National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency)
  • 투고 : 2019.10.16
  • 심사 : 2020.02.13
  • 발행 : 2020.06.28

초록

Various microorganisms play important roles in food fermentation, food spoilage, and agriculture. In this study, the biotype of 54 yeast and bacterial strains having high potential for utilization in food and agriculture, including Candida spp., Lactobacillus spp., and Acetobacter spp., were characterized by matrix-assisted laser desorption/ionization time-of flight mass spectrometry (MALDI-TOF MS). This characterization using a fast and robust method provides much-needed information on the selected microorganisms and will facilitate effective usage of these strains in various applications. Importantly, the unique protein profile of each microbial species obtained from this study was used to create a database of fingerprints from these species. The database was validated using microbial strains of the same species by comparing the mass spectra with the created database through pattern matching. The created reference database provides crucial information and is useful for further utilization of a large number of valuable microorganisms relevant to food and agriculture.

키워드

참고문헌

  1. Juodeikiene G, Bartkiene E, Pranas V, Urbonaviciene D, Eidukonyte D, Bobinas V. 2012. Fermentation processes using lactic acid bacteria producing bacteriocins for preservation and improving functional properties of food products. In Marian Petre (ed.), Adv. Appl. Biotechnol. Available from: https://www.intechopen.com/books/advances-in-applied-biotechnology/fermentation-processes-using-lactic-acid-bacteria-producing-bacteriocins-for-preservation-and-improv.
  2. Ritchie ML, Romanuk TN 2012. A meta-analysis of probiotic efficacy for gastrointestinal diseases. PLoS One 7: e34938. https://doi.org/10.1371/journal.pone.0034938
  3. Lopitz-Otsoa F, Rementeria A, Elguezabal N, Garaizar J. 2006. Kefir: a symbiotic yeasts-bacteria community with alleged healthy capabilities. Rev. Iberoam Micol. 23: 67-74. https://doi.org/10.1016/S1130-1406(06)70016-X
  4. Gekenidis M, Studer P, Wüthrich S, Brunisholz R, Drissner D. 2014. Beyond the matrix-assisted laser desorption ionization (MALDI) biotyping workflow: In search of microorganism-specific tryptic peptides enabling discrimination of subspecies. Appl. Environ. Microbiol. 80: 4234-4241. https://doi.org/10.1128/AEM.00740-14
  5. Patel, R. 2015. MALDI-TOF MS for the diagnosis of infectious diseases. Clin. Chem. 61: 100-111. https://doi.org/10.1373/clinchem.2014.221770
  6. Angeletti, S. 2017. Matrix assisted laser desorption time of flight mass spectrometry (MALDI-TOF MS) in clinical microbiology. J. Microbiol. Methods. 138: 20-29. https://doi.org/10.1016/j.mimet.2016.09.003
  7. Moothoo-Padayachie A, Kandappa HR, Krishna SBN, Maier T, Govender P. 2013. Biotyping Saccharomyces cerevisiae strains using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) Eur. Food Res. Technol. 236: 351-364. https://doi.org/10.1007/s00217-012-1898-1
  8. Singhal N, Kumar M, Kanaujia PK, Virdi JS. 2015. MALDI-TOF mass spectrometry: an emerging technology for microbial identification and diagnosis. Front. Microbiol. 6: 791.
  9. Pavlovic M, Huber I, Konrad R, Busch U. 2014. Application of MALDI-TOF MS for the identification of food borne bacteria. Open Microbiol. J. 7: 135-141. https://doi.org/10.2174/1874285801307010135
  10. Ingsriswang S, Pacharawongsakda E. 2007. sMOL Explorer: an open source, web-enabled database and exploration tool for Small MOLecules datasets. Bioinformatics 23: 2498-2500. https://doi.org/10.1093/bioinformatics/btm363
  11. Bizzini A, Greub G. 2010 Matrix-assisted laser desorption ionization time-of-flight mass spectrometry, a revolution in clinical microbial identification. Clin. Microbiol. Infect. 16: 1614-1619. https://doi.org/10.1111/j.1469-0691.2010.03311.x
  12. Sun L, Teramoto K, Sato H, Torimura M, Tao H, Shintani T. 2006. Characterization of ribosomal proteins as biomarkers for matrix-assisted laser desorption/ionization mass spectral identification of Lactobacillus plantarum. Rapid Commun. Mass Spectrom. 20: 3789-3798. https://doi.org/10.1002/rcm.2801
  13. Laroche M, Almeras L, Pecchi E, Bechah Y, Raoult D, Viola A, et al. 2017. MALDI-TOF MS as an innovative tool for detection of Plasmodium parasites in Anopheles mosquitoes. Malar J. 16(1): 5. doi: 10.1186/s12936-016-1657-z.
  14. Seng P, Rolain JM, Fournier PE, La Scol, B, Drancourt M, Raoult D. 2010. MALDI-TOF-mass spectrometry applications in clinical microbiology. Future Microbiol. 5: 1733-1754. https://doi.org/10.2217/fmb.10.127
  15. Dhiman N, Hall L, Wohlfiel SL, Buckwalter SP, Wengenack NL. 2011. Performance and cost analysis of matrix-assisted laser desorption ionization-time of flight mass spectrometry for routine identification of yeast. J. Clin. Microbiol. 49: 1614-1616. https://doi.org/10.1128/JCM.02381-10
  16. Dridi B, Raoult D, Drancourt M. 2012. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry identification of Archaea: towards the universal identification of living organisms. APMIS 120: 85-91. https://doi.org/10.1111/j.1600-0463.2011.02833.x
  17. van Veen SQ, Claas ECJ, Kuijper EJ. 2010. High-throughput identification of bacteria and yeast by matrix-assisted laser desorption ionization-time of flight mass spectrometry in conventional medical microbiology laboratories. J. Clin. Microbiol. 48: 900-907. https://doi.org/10.1128/JCM.02071-09
  18. Fenselau C, Demirev PA. 2001. Characterization of intact microorganisms by MALDI mass spectrometry. Mass. Spectrom. Rev. 20: 157-171. https://doi.org/10.1002/mas.10004
  19. Lay JO, Jr. 2001. MALDI-TOF mass spectrometry of bacteria. Mass Spectrom. Rev. 20: 172-194. https://doi.org/10.1002/mas.10003
  20. Rahi P, Prakash O, Shouch YS. 2016. Matrix-assisted laser desorption/ionization time-of-flight mass-spectrometry (MALDI-TOF MS) based microbial identifications: Challenges and scopes for microbial ecologists. Front Microbiol. 7: 1359.
  21. Mellmann A, Cloud J, Maier T, Keckevoet U, Ramminger I, Iwen P. 2008. Evaluation of matrix-assisted laser desorption ionization-time-of-flight mass spectrometry in comparison to 16S rRNA gene sequencing for species identification of nonfermenting bacteria. J. Clin. Microbiol. 46: 1946-1954. https://doi.org/10.1128/JCM.00157-08
  22. Croxatto A, Prod'hom G, Greub G. 2011. Applications of MALDITOF mass spectrometry in clinical diagnostic microbiology. FEMS Microbiol. Rev. 36: 380-407. https://doi.org/10.1111/j.1574-6976.2011.00298.x
  23. Calderaro A, Arcangeletti MC, Rodighiero I, Buttrini M, Gorrini C, Motta F, et al. 2014. Matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry applied to virus identification. Sci. Rep. 4: 6803. https://doi.org/10.1038/srep06803
  24. Normand A, Cassagne C, Gautier M, Becker P, Ranque S, Hendrickx M, et al. 2017. Decision criteria for MALDI-TOF MS-based identification of filamentous fungi using commercial and in-house reference databases. BMC Microbiol. 17: 25. https://doi.org/10.1186/s12866-017-0937-2
  25. Rezac S, Kok, CR, Heermann M, Hutkins, R. 2018. Fermented foods as a dietary source of live organisms. Front. Microbiol. 9: 1785. https://doi.org/10.3389/fmicb.2018.01785