References
- Miller M, Bassler B. 2001. Quorum sensing in bacteria. Annu. Rev. Microbiol. 55: 165-199. https://doi.org/10.1146/annurev.micro.55.1.165
- Whitehead N, Barnard A, Slater H, Simpson N, Salmond G. 2001. Quorum-sensing in Gram-negative bacteria. FEMS Microbiol. Rev. 25: 365-404. https://doi.org/10.1111/j.1574-6976.2001.tb00583.x
- Davies D. 1998. The involvement of cell-to-cell signals in the development of a bacterial biofilm. Science 280: 295-298. https://doi.org/10.1126/science.280.5361.295
- Dickschat J. 2010. Quorum sensing and bacterial biofilms. Nat. Prod. Rep. 27: 343. https://doi.org/10.1039/b804469b
- Grandclement C, Tannieres M, Morera S, Dessaux Y, Faure D. 2015. Quorum quenching: role in nature and applied developments. FEMS Microbiol. Rev. 40: 86-116. https://doi.org/10.1093/femsre/fuv038
- Yeon K, Cheong W, Oh H, Lee W, Hwang B, Lee C, et al. 2009. Quorum sensing: a new biofouling control paradigm in a membrane bioreactor for advanced wastewater treatment. Environ. Sci. Technol. 43: 380-385. https://doi.org/10.1021/es8019275
- Dong Y, Wang L, Xu J, Zhang H, Zhang X, Zhang L. 2001. Quenching quorum-sensing-dependent bacterial infection by an N-acyl homoserine lactonase. Nature 411: 813-817. https://doi.org/10.1038/35081101
- Lee S, Park S, Lee, J, Yum D, Koo B, Lee J. 2002. Genes encoding the N-acyl homoserine lactone-degrading enzyme are widespread in many subspecies of Bacillus thuringiensis. Appl. Environ. Microbiol. 68: 3919-3924. https://doi.org/10.1128/AEM.68.8.3919-3924.2002
- Uroz S, Chhabra S, Camara M, Williams P, Oger P, Dessaux Y. 2005. N-Acylhomoserine lactone quorum-sensing molecules are modified and degraded by Rhodococcus erythropolis W2 by both amidolytic and novel oxidoreductase activities. Microbiology 151: 3313-3322. https://doi.org/10.1099/mic.0.27961-0
- Wang L, Dong Y, Zhang L. 2007. Quorum quenching: impact and mechanisms. Philos. Trans. R. Soc. 362: 1201-1211. https://doi.org/10.1098/rstb.2007.2045
- Lin Y, Xu J, Hu J, Wang L, Ong S, Leadbetter J, et al. 2003. Acyl-homoserine lactone acylase from Ralstonia strain XJ12B represents a novel and potent class of quorum-quenching enzymes. Mol. Microbiol. 47: 849-860. https://doi.org/10.1046/j.1365-2958.2003.03351.x
- Huang J, Petersen A, Whiteley M, Leadbetter J. 2006. Identification of QuiP, the product of gene PA1032, as the second acylhomoserine lactone acylase of Pseudomonas aeruginosa PAO1. Appl. Environ. Microbiol. 72: 1190-1197. https://doi.org/10.1128/AEM.72.2.1190-1197.2006
- Chowdhary P, Keshavan N, Nguyen H, Peterson J, Gonzalez J, Haines D. 2007. Bacillus megaterium CYP102A1 oxidation of acyl homoserine lactones and acyl homoserines. Biochemistry 46: 14429-14437. https://doi.org/10.1021/bi701945j
- Bijtenhoorn P, Schipper C, Hornung C, Quitschau M, Grond S, Weiland N, et al. 2011. BpiB05, a novel metagenome-derived hydrolase acting on N-acylhomoserine lactones. J. Biotechnol. 155: 86-94. https://doi.org/10.1016/j.jbiotec.2010.12.016
- Kalia V. 2013. Quorum sensing inhibitors: an overview. Biotechnol. Adv. 31: 224-245. https://doi.org/10.1016/j.biotechadv.2012.10.004
- Fetzner S. 2015. Quorum quenching enzymes. J. Biotechnol. 201: 2-14. https://doi.org/10.1016/j.jbiotec.2014.09.001
- Bzdrenga J, Daude D, Remy B, Jacquet P, Plener L, Elias M, et al. 2017. Biotechnological applications of quorum quenching enzymes. Chem. Biol. Interact. 267: 104-115. https://doi.org/10.1016/j.cbi.2016.05.028
- Dong Y, Xu J, Li X, Zhang L. 2000. AiiA, an enzyme that inactivates the acylhomoserine lactone quorum-sensing signal and attenuates the virulence of Erwinia carotovora. Proc. Natl. Acad. Sci. USA 97: 3526-3531. https://doi.org/10.1073/pnas.97.7.3526
- Kim M, Choi W, Kang H, Lee J, Kang B, Kim K, et al. 2005. The molecular structure and catalytic mechanism of a quorum-quenching N-acyl-L-homoserine lactone hydrolase. Proc. Natl. Acad. Sci. 102: 17606-17611 https://doi.org/10.1073/pnas.0504996102
- Uroz S, Oger P, Chapelle E, Adeline M, Faure D, Dessaux Y. 2008. A Rhodococcus qsdA-encoded enzyme defines a novel class of largespectrum quorum-quenching lactonases. Appl. Environ. Microbiol. 74: 1357-1366. https://doi.org/10.1128/AEM.02014-07
- Xue B, Chow J, Baldansuren A, Yap L, Gan Y, Dikanov S, et al. 2013. Structural evidence of a productive active site architecture for an evolved quorum-quenching GKL lactonase. Biochemistry 52: 2359-2370. https://doi.org/10.1021/bi4000904
- Mei G, Yan X, Turak A, Luo Z, Zhang L. 2010. AidH, an alpha/beta-hydrolase fold family member from an Ochrobactrum sp. strain, is a novel N-acylhomoserine lactonase. Appl. Environ. Microbiol. 76: 4933-4942. https://doi.org/10.1128/AEM.00477-10
- Wang W, Morohoshi T, Someya N, Ikeda T. 2012. Diversity and distribution of N-acylhomoserine lactone (AHL)-degrading activity and AHL-lactonase (AiiM) in genus Microbacterium. Microbes. Environ. 27: 330-333. https://doi.org/10.1264/jsme2.ME11341
- Kim D, Choi K, Yoo M, Zylstra G, Kim E. 2018. Biotechnological potential of Rhodococcus biodegradative pathways. J. Microbiol. Biotechnol. 28: 1037-1051. https://doi.org/10.4014/jmb.1712.12017
- de Carvalho C, da Fonseca M. 2005. The remarkable Rhodococcus erythropolis. Appl. Microbiol. Biotechnol. 67: 715-726. https://doi.org/10.1007/s00253-005-1932-3
- van der Geize R, Dijkhuizen L. 2004. Harnessing the catabolic diversity of rhodococci for environmental and biotechnological applications. Curr. Opin. In. Microbiol. 7: 255-261. https://doi.org/10.1016/j.mib.2004.04.001
- Oh H, Yeon K, Yang C, Kim S, Lee C, Park S, et al. 2012. Control of membrane biofouling in MBR for wastewater treatment by quorum quenching bacteria encapsulated in microporous membrane. Environ. Sci. Technol. 46: 4877-4884. https://doi.org/10.1021/es204312u
- Barbey C, Chane A, Burini J, Maillot O, Merieau A, Gallique M, et al. 2018. A rhodococcal transcriptional regulatory mechanism detects the common lactone ring of AHL quorum-sensing signals and triggers the quorum-quenching response. Front. Microbiol. 9: 2800. https://doi.org/10.3389/fmicb.2018.02800
- Park S, Hwang B, Shin M, Kim J, Kim H, Lee J. 2006. N-acylhomoserine lactonase producing Rhodococcus spp. with different AHLdegrading activities. FEMS Microbiol. Lett. 261: 102-108. https://doi.org/10.1111/j.1574-6968.2006.00336.x
- Latifi A, Winson M, Foglino M, Bycroft B, Stewart G, Lazdunski A, et al. 1995. Multiple homologues of LuxR and LuxI control expression of virulence determinants and secondary metabolites through quorum sensing in Pseudomonas aeruginosa PAO1. Mol. Microbiol. 17: 333-343. https://doi.org/10.1111/j.1365-2958.1995.mmi_17020333.x
- Cook D, Li P, Ruchaud F, Padden S, Farrand S. 1997. Ti plasmid conjugation is independent of vir: reconstitution of the tra functions from pTiC58 as a binary system. J. Bacteriol. 179: 1291-1297. https://doi.org/10.1128/JB.179.4.1291-1297.1997
- Zhu J, Winans S. 1998. Activity of the quorum-sensing regulator TraR of Agrobacterium tumefaciens is inhibited by a truncated, dominant defective TraR-like protein. Mol. Microbiol. 27: 289-297. https://doi.org/10.1046/j.1365-2958.1998.00672.x
- Tang K, Zhang Y, Yu M, Shi X, Coenye T, Bossier P, et al. 2013. Evaluation of a new high-throughput method for identifying quorum quenching bacteria. Sci. Rep. 3: 2935. https://doi.org/10.1038/srep02935
- Kim A, Park S, Lee C, Lee C, Lee J. 2014. Quorum quenching bacteria isolated from the sludge of a wastewater treatment plant and their application for controlling biofilm formation. J. Microbiol. Biotechnol. 24: 1574-1582. https://doi.org/10.4014/jmb.1407.07009
- Zhu B, Cai G, Hall EO, Freeman GJ. 2007. In-fusion assembly: seamless engineering of multidomain fusion proteins, modular vectors, and mutations. Biotechniques 43: 354-359. https://doi.org/10.2144/000112536
- McClean K, Winson M, Fish L, Taylor A, Chhabra S, Camara M, et al. 1997. Quorum sensing and Chromobacterium violaceum: exploitation of violacein production and inhibition for the detection of N-acylhomoserine lactones. Microbiology 143: 3703-3711. https://doi.org/10.1099/00221287-143-12-3703
- Shastry RP, Dolan SK, Abdelhamid Y, Vittal RR, Welch M. 2018. Purification and characterisation of a quorum quenching AHLlactonase from the endophytic bacterium Enterobacter sp. CS66. FEMS Microbiol. Lett. 365: fny054.
- Last D, Kruger G, Dorr M, Bornscheuer U. 2016. Fast, continuous, and high-throughput (bio)chemical activity assay for N-acyl-lhomoserine lactone quorum-quenching enzymes. Appl. Environ. Microbiol. 82: 4145-4154. https://doi.org/10.1128/AEM.00830-16
- Yates E, Philipp B, Buckley C, Atkinson S, Chhabra S, Sockett R, et al. 2002. N-acylhomoserine lactones undergo lactonolysis in a pH-, temperature-, and acyl chain length-dependent manner during growth of Yersinia pseudotuberculosis and Pseudomonas aeruginosa. Infect. Immun. 70: 5635-5646. https://doi.org/10.1128/IAI.70.10.5635-5646.2002
- O'Toole G, Kolter R. 1998. Initiation of biofilm formation in Pseudomonas fluorescens WCS365 proceeds via multiple, convergent signaling pathways: a genetic analysis. Mol. Microbiol. 28: 449-461. https://doi.org/10.1046/j.1365-2958.1998.00797.x
- Fan X, Liang M, Wang L, Chen R, Li H, Liu X. 2017. Aii810, a novel cold-adapted N-acylhomoserine lactonase discovered in a metagenome, can strongly attenuate Pseudomonas aeruginosa virulence factors and biofilm formation. Front. Microbiol. 8: 1950. https://doi.org/10.3389/fmicb.2017.01950
- Holmquist M. 2000. Alpha beta-hydrolase fold enzymes structures, functions and mechanisms. Curr. Protein Pept. Sci. 1: 209-235. https://doi.org/10.2174/1389203003381405
- Gao A, Mei G, Liu S, Wang P, Tang Q, Liu Y, et al. 2012. High-resolution structures of AidH complexes provide insights into a novel catalytic mechanism forN-acyl homoserine lactonase. Acta. Crystallogr. Sect. D-Biol. Crystallogr. 69: 82-91. https://doi.org/10.1107/S0907444912042369
- Czajkowski R, Krzyzanowska D, Karczewska J, Atkinson S, Przysowa J, Lojkowska E, et al. 2011. Inactivation of AHLs by Ochrobactrum sp. A44 depends on the activity of a novel class of AHL acylase. Environ. Microbiol. Rep. 3: 59-68. https://doi.org/10.1111/j.1758-2229.2010.00188.x
- Mayer C, Muras A, Romero M, Lopez M, Tomas M, Otero A. 2018. Multiple quorum quenching enzymes are active in the nosocomial pathogen Acinetobacter baumannii ATCC17978. Front. Cell. Infect. Microbiol. 8: 310. https://doi.org/10.3389/fcimb.2018.00310
- Bokhove M, Jimenez P, Quax W, Dijkstra B. 2009. The quorum-quenching N-acyl homoserine lactone acylase PvdQ is an Ntnhydrolase with an unusual substrate-binding pocket. Proc. Natl. Acad. Sci. USA 107: 686-691. https://doi.org/10.1073/pnas.0911839107
- Schipper C, Hornung C, Bijtenhoorn P, Quitschau M, Grond S, Streit W. 2008. Metagenome-derived clones encoding two novel lactonase family proteins involved in biofilm inhibition in Pseudomonas aeruginosa. Appl. Environ. Microbiol. 75: 224-233. https://doi.org/10.1128/AEM.01389-08
- Fan X, Liu X, Liu Y. 2012. The cloning and characterization of one novel metagenome-derived thermostable esterase acting on Nacylhomoserine lactones. J. Mol. Catal. B-Enzym. 83:29-37. https://doi.org/10.1016/j.molcatb.2012.07.006
- Afriat L, Roodveldt C, Manco G, Tawfik D. 2006. The latent promiscuity of newly identified microbial lactonases is linked to a recently diverged phosphotriesterase. Biochemistry 45: 13677-13686. https://doi.org/10.1021/bi061268r
Cited by
- Biocontrol of Biofilm Formation: Jamming of Sessile-Associated Rhizobial Communication by Rhodococcal Quorum-Quenching vol.22, pp.15, 2021, https://doi.org/10.3390/ijms22158241