References
- Smith RW, Vlahos P, Tobias C, Ballentine M, Ariyarathna T, Cooper C. 2013. Removal rates of dissolved munitions compounds in seawater. Chemosphere 92: 898-904. https://doi.org/10.1016/j.chemosphere.2013.02.049
- Andeer P, Stahl DA, Lillis L, Strand SE. 2013. Identification of microbial populations assimilating nitrogen from RDX in munitions contaminated military training range soils by high sensitivity stable isotope probing. Environ. Sci. Technol. 47: 10356-10363. https://doi.org/10.1021/es401729c
- Arbeli Z, Garcia-Bonilla E, Pardo C, Hidalgo K, Velasquez T, Pena L, et al. 2016. Persistence of pentolite (PETN and TNT) in soil microcosms and microbial enrichment cultures. Environ. Sci. Pollut. Res. 23: 9144-9155. https://doi.org/10.1007/s11356-016-6133-3
- Payne ZM, Lamichhane KM, Babcock Jr RW, Turnbull SJ. 2013. Pilot-scale in situ bioremediation of HMX and RDX in soil pore water in Hawaii. Environ. Sci. Process Impacts 15: 2023-2029. https://doi.org/10.1039/c3em00320e
- Jayamani I, Cupples AM. 2015. Stable isotope probing reveals the importance of Comamonas and Pseudomonadaceae in RDX degradation in samples from a Navy detonation site. Environ. Sci. Pollut. Res. 22: 10340-10350. https://doi.org/10.1007/s11356-015-4256-6
- Wilson FP, Cupples AM. 2016. Microbial community characterization and functional gene quantification in RDX-degrading microcosms derived from sediment and groundwater at two naval sites. Appl. Microbiol. Biotechnol. 100: 7297-7309. https://doi.org/10.1007/s00253-016-7559-8
- ATSDR. 2010. Agency for Toxic Substances and Disease Registry. Available from http://www.atsdr.cdc.gov. Accessed Oct.12, 2019.
- Eaton HL, De Lorme M, Chaney RL, Craig AM. 2011. Ovine ruminal microbes are capable of biotransforming hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX). Microb. Ecol. 62: 274-286. https://doi.org/10.1007/s00248-011-9809-8
- Schoenmuth B, Mueller JO, Scharnhorst T, Schenke D, Buttner C, Pestemer W. 2014. Elevated root retention of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) in coniferous trees. Environ. Sci. Pollut. Res. 21: 3733-3743. https://doi.org/10.1007/s11356-013-2306-5
- Halasz A, Hawari J. 2011. Degradation Routes of RDX in various redox systems. ACS Symp. Ser. 1071: 441-462.
- Khan MI, Lee J, Park J. 2012. Microbial degradation and toxicity of hexahydro-1,3,5-trinitro-1,3,5-triazine. J. Microbiol. Biotechnol. 22: 1311-1323. https://doi.org/10.4014/jmb.1203.04002
- Coleman NV, Nelson DR, Duxbury T. 1998. Aerobic biodegradation of hexahydro-1,3,5-trinitro-1,3,5- triazine (RDX) as a nitrogen source by a Rhodococcus sp., strain DN22. Soil Biol. Biochem. 30: 1159-1167. https://doi.org/10.1016/S0038-0717(97)00172-7
- Seth-Smith HM, Rosser SJ, Basran A, Travis ER, Dabbs ER, Nicklin S, et al. 2002. Cloning, sequencing, and characterization of the hexahydro-1,3,5-trinitro-1,3,5-triazine degradation gene cluster from Rhodococcus rhodochrous. Appl. Environ. Microbiol. 68: 4764-4771. https://doi.org/10.1128/AEM.68.10.4764-4771.2002
- Thompson KT, Crocker FH, Fredrickson HL. 2005. Mineralization of the cyclic nitramine explosive hexahydro-1,3,5-trinitro-1,3,5-triazine by Gordonia and Williamsia spp. Appl. Environ. Microbiol. 71: 8265-8272. https://doi.org/10.1128/AEM.71.12.8265-8272.2005
- Nejidat A, Kafka L, Tekoah Y, Ronen Z. 2008. Effect of organic and inorganic nitrogenous compounds on RDX degradation and cytochrome P-450 expression in Rhodococcus strain YH1. Biodegradation 19: 313-320. https://doi.org/10.1007/s10532-007-9137-3
- Crocker FH, Indest KJ, Jung CM, Hancock DE, Fuller ME, Hatzinger PB, et al. 2015. Evaluation of microbial transport during aerobic bioaugmentation of an RDX-contaminated aquifer. Biodegradation 26: 443-451. https://doi.org/10.1007/s10532-015-9746-1
- Fuller ME, Hatzinger PB, Condee CW, Andaya C, Vainberg S, Michalsen MM, et al. 2015. Laboratory evaluation of bioaugmentation for aerobic treatment of RDX in groundwater. Biodegradation 26: 77-89. https://doi.org/10.1007/s10532-014-9717-y
- Fuller ME, Hatzinger PB, Condee CW, Andaya C, Rezes R, Michalsen MM, et al. 2017. RDX degradation in bioaugmented model aquifer columns under aerobic and low oxygen conditions. Appl. Microbiol. Biotechnol. 101: 5557-5567. https://doi.org/10.1007/s00253-017-8269-6
- Lee BU, Choi MS, Kim DM, Oh KH. 2017. Genome Shuffling of Stenotrophomonas maltophilia OK-5 for improving the degradation of explosive RDX (hexahydro-1,3,5-trinitro-1,3,5-triazine). Curr. Microbiol. 74: 268-276. https://doi.org/10.1007/s00284-016-1179-5
- McCormick NG, Cornell JH, Kaplan AM. 1981. Biodegradation of hexahydro- 1,3,5-trinitro- 1,3,5-triazine. Appl. Environ. Microbial. 42: 817-823. https://doi.org/10.1128/AEM.42.5.817-823.1981
- Boopathy R, Kulpa CF, Manning J. 1998. Anaerobic biodegradation of explosives and related compounds by sulfate-reducing and methanogenic bacteria: a review. Bioresour. Technol. 63: 81-89. https://doi.org/10.1016/S0960-8524(97)00083-7
- Speitel GE, Engels TL, McKinney DC. 2001. Biodegradation of RDX in unsaturated soil. Bioremed. J. 5: 1-11. https://doi.org/10.1080/20018891079168
- Morley MC, Shammas SN, Speitel GE. 2002. Biodegradation of RDX and HMX mixtures: Batch screening experiments and sequencing batch reactors. Environ. Eng. Sci. 19: 237-250. https://doi.org/10.1089/109287502760271553
- Zhao JS, Halasz A, Paquet L, Beaulieu C, Hawari J. 2002. Biodegradation of hexahydro-1,3,5-trinitro- 1,3,5-triazine and its mononitroso derivative hexahydro-1-nitroso-3,5-dinitro- 1,3,5-triazine by Klebsiella pneumoniae strain SCZ-1 isolated from an anaerobic sludge. Appl. Environ. Microbiol. 68: 5336-5341. https://doi.org/10.1128/AEM.68.11.5336-5341.2002
- Adrian NR, Arnett CM. 2007. Anaerobic biotransformation of explosives in aquifer slurries amended with ethanol and propylene glycol. Chemosphere 66: 1849-1856. https://doi.org/10.1016/j.chemosphere.2006.08.042
- Arnett C, Adrian NR. 2009. Cosubstrate independent mineralization of hexahydro-1,3,5-trinitro-1,3,5- triazine (RDX) by a Desulfovibrio species under anaerobic conditions. Biodegradation 20: 15-26. https://doi.org/10.1007/s10532-008-9195-1
- Bhushan B, Halasz A, Thiboutot S, Ampleman G, Hawari J. 2004. Chemotaxis-mediated biodegradation of cyclic nitramine explosives RDX, HMX, and CL-20 by Clostridium sp. EDB2. Biochem. Biophys. Res. Commun. 316: 816-821. https://doi.org/10.1016/j.bbrc.2004.02.120
- Waisner S, Hansen L, Fredrickson H, Nestler C, Zappi M, Banerji S, et al. 2002. Biodegradation of RDX within soil-water slurries using a combination of differing redox incubation conditions. J. Hazard. Mater. 95: 91-106. https://doi.org/10.1016/S0304-3894(02)00052-3
- Eaton HL, Duringer JM, Murty LD, Craig AM. 2013. Anaerobic bioremediation of RDX by ovine whole rumen fluid and pure culture isolates. Appl. Microbiol. Biotechnol. 97: 3699-3710. https://doi.org/10.1007/s00253-012-4172-3
- Fuller M, Steffan RJ. 2009. Transformation of RDX and other energetic compounds by xenobiotic reductases XenA and XenB. Appl. Microbiol. Biotechnol. 84: 535-544. https://doi.org/10.1007/s00253-009-2024-6
- Semenov AM, van Bruggen AHC, Zelenev VV. 1999. Moving waves of bacterial populations and total organic carbon along roots of wheat. Microb. Ecol. 37: 116-128. https://doi.org/10.1007/s002489900136
- Liu YJ, Liu SJ, Drake HL, Horn MA. 2013. Consumers of 4-chloro-2-methylphenoxyacetic acid from agricultural soil and drilosphere harbor cadA, r/sdpA, and tfdA-like gene encoding oxygenases. FEMS Microbiol. Ecol. 86: 114-129. https://doi.org/10.1111/1574-6941.12144
- Lamichhane KM, Babcock Jr RW, Turnbull SJ, Schenck S. 2012. Molasses enhanced phyto and bioremediation treatability study of explosives contaminated Hawaiian soils. J. Hazard. Mater. 243: 334-339. https://doi.org/10.1016/j.jhazmat.2012.10.043
- Khan MI, Yang J, Yoo B, Park J. 2015. Improved RDX detoxification with starch addition using a novel nitrogen-fixing aerobic microbial consortium from soil contaminated with explosives. J. Hazard. Mater. 287: 243-251. https://doi.org/10.1016/j.jhazmat.2015.01.058
- Kwon MJ, Finneran KT. 2006. Microbially mediated biodegradation of hexahydro-1,3,5-trinitro-1,3,5- triazine by extracellular electron shuttling compounds. Appl. Environ. Microbiol. 72: 5933-5941. https://doi.org/10.1128/AEM.00660-06
- Ariyarathna T, Vlahos P, Smith RW, Fallis S, Groshens T, Tobias C. 2017. Biodegradation and mineralization of isotopically labeled TNT and RDX in anaerobic marine sediments. Environ. Toxicol. Chem. 36: 1170-1180. https://doi.org/10.1002/etc.3666
- EPA, U.S. 1994. Nitroaromatics and nitramines by HPLC. Second update SW-846 method 8330. Office of Solid Waste and Emergency Response, Washington, D.C., USA.
- Sagi-Ben Moshe S, Dahan O, Weisbrod N, Bernstein A, Adar E, Ronen Z. 2012. Biodegradation of explosives mixture in soil under different water-content conditions. J. Hazard. Mater. 203-204: 333-340. https://doi.org/10.1016/j.jhazmat.2011.12.029
- George D, Mallery P. 2009. SPSS for Windows Step by Step: A Simple Guide and Reference, 16.0 Update, 9th Ed. Allyn & Bacon, Boston, England.
- Klindworth A, Pruesse E, Schweer T, Peplies J, Quast C, Horn M, et al. 2013. Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies. Nucleic Acids Res. 41: e1. https://doi.org/10.1093/nar/gks808
- Yoo K, Yoo H, Lee JM, Shukla SK, Park J. 2018. Classification and regression tree approach for prediction of potential hazards of urban airborne bacteria during Asian dust events. Sci. Rep. 8: 11823. https://doi.org/10.1038/s41598-018-29796-7
- Kozich JJ, Westcott SL, Baxter NT, Highlander SK, Schloss PD. 2013. Development of a dual-index sequencing strategy and curation pipeline for analyzing amplicon sequence data on the MiSeq Illumina sequencing platform. Appl. Environ. Microbiol. 79: 5112-5120. https://doi.org/10.1128/AEM.01043-13
- Edgar RC. 2004. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 32: 1792-1797. https://doi.org/10.1093/nar/gkh340
- Zhao JS, Paquet L, Halasz A, Hawari J. 2003. Metabolism of hexahydro-1,3,5-trinitro-1,3,5-triazine through initial reduction to hexahydro-1-nitroso-3,5-dinitro-1,3,5-triazine followed by denitration in Clostridium bifermentans HAW-1. Appl. Microbiol. Biotechnol. 63: 187-193. https://doi.org/10.1007/s00253-003-1364-x
- Adrian NR, Arnett CM. 2004. Anaerobic biodegradation of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) by Acetobacterium malicum strain HAAP-1 isolated from a methanogenic mixed culture. Curr. Microbiol. 48: 332-340. https://doi.org/10.1007/s00284-003-4156-8
- Zhao JS, Manno D, Hawari J. 2008. Regulation of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) metabolism in Shewanella halifaxensis HAW-EB4 by terminal electron acceptor and involvement of c-type cytochrome. Microbiology 154: 1026-1037. https://doi.org/10.1099/mic.0.2007/013409-0
- Meyer SA, Marchand AJ, Hight JL, Roberts GH, Escalon LB, Inouye LS, et al. 2005. Up-and-down procedure (UDP) determinations of acute oral toxicity of nitroso degradation products of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX). J. Appl. Toxicol. 25: 427-434. https://doi.org/10.1002/jat.1090
- Hawari J, Halasz A, Sheremata T, Beaudet S, Groom C, Paquet L, et al. 2000. Characterization of metabolites during biodegradation of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) with municipal anaerobic sludge. Appl. Environ. Microbiol. 66: 2652-2657. https://doi.org/10.1128/AEM.66.6.2652-2657.2000
- Huang K, Ni J, Xu K, Tang H, Tao F, Xu P. 2014. Genome sequence of Sporolactobacillus terrae DSM 11697, the type strain of the species. Genome Announc. 2: e00465-14.
- Wang H, Wang L, Ju J, Yu B, Ma Y. 2013. Genome sequence of Sporolactobacillus laevolacticus DSM442, an efficient polymer-grade dlactate producer from agricultural waste cottonseed as a nitrogen source. Genome Announc. 1: e01100-13.
- Kitts CL, Green CE, Otley RA, Alvarez MA, Unkefer PJ. 2000. Type I nitroreductases in soil enterobacteria reduce TNT (2,4,6,-trinitrotoluene) and RDX (hexahydro-1,3,5-trinitro-1,3,5-triazine). Can. J. Microbiol. 46: 278-282. https://doi.org/10.1139/w99-134
- Perreault NN, Crocker FH, Indest KJ, Hawari J. 2012. Involvement of cytochrome c CymA in the anaerobic metabolism of RDX by Shewanella oneidensis MR-1. Can. J. Microbiol. 58: 124-131. https://doi.org/10.1139/w11-116
- Andeer P, Stahl DA, Bruce NC, Strand SE. 2009. Lateral transfer of genes for hexahydro-1,3,5-trinitro -1,3,5-triazine (RDX) degradation. Appl. Environ. Microbiol. 75: 3258-3262. https://doi.org/10.1128/AEM.02396-08
- Adrian NR, Arnett CM. 2006. Hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) serves as a carbon and energy source for a mixed culture under anaerobic conditions. Curr. Microbiol. 53: 129-134. https://doi.org/10.1007/s00284-005-0348-8
- Iida K, Ueda Y, Kawamura Y, Ezaki T, Takade A, Yoshida S, et al. 2005. Paenibacillus motobuensis sp. nov., isolated from a composting machine utilizing soil from Motobu-town, Okinawa, Japan. Int. J. Syst. Evol. Microbiol. 55: 1811-1816. https://doi.org/10.1099/ijs.0.63636-0
- Song L, Dong X. 2008. Clostridium amylolyticum sp. nov., isolated from H2-producing UASB granules. Int. J. Syst. Evol. Microbiol. 58: 2132-2135. https://doi.org/10.1099/ijs.0.65635-0
- Yu B, Su F, Wang L, Xu K, Zhao B, Xu P. 2011. Draft genome sequence of Sporolactobacillus inulinus strain CASD, an efficient D-lactic acid-producing bacterium with high-concentration lactate tolerance capability. J. Bacteriol. 193: 5864-5865. https://doi.org/10.1128/JB.05934-11
- Kwon MJ, Wei N, Millerick K, Popovic J, Finneran K. 2014. Clostridium geopurificans strain MJ1 sp. nov., a strictly anaerobic bacterium that grows via fermentation and reduces the cyclic nitramine explosive hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX). Curr. Microbiol. 68: 743-750. https://doi.org/10.1007/s00284-014-0531-x
- Li RW, Giarrizzo JG, Wu S, Li W, Duringer JM, Craig AM. 2014. Metagenomic insights into the RDX-degrading potential of the ovine rumen microbiome. PLoS One 9: e110505. https://doi.org/10.1371/journal.pone.0110505
- Bhushan B, Halasz A, Hawari J. 2005. Biotransformation of CL-20 by a dehydrogenase enzyme from Clostridium sp. EDB2. Appl. Microbiol. Biotechnol. 69: 448-455. https://doi.org/10.1007/s00253-005-1992-4
- Bhushan B, Halasz A, Spain JC, Hawari J. 2002. Diaphorase catalyzed biotransformation of RDX via N-denitration mechanism. Biochem. Biophys. Res. Commun. 296: 779-784. https://doi.org/10.1016/S0006-291X(02)00874-4
- Zhao JS, Manno D, Hawari J. 2007. Abundance and diversity of octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) - metabolizing bacteria in UXO-contaminated marine sediments. FEMS Microbiol. Ecol. 59: 706-717. https://doi.org/10.1111/j.1574-6941.2006.00248.x
- Fuller ME, McClay K., Higham M, Hatzinger PB, Steffan RJ. 2010. Hexahydro-1,3,5-trinitro-1,3,5- triazine (RDX) bioremediation in groundwater: Are known RDX-degrading bacteria the dominant players? Bioremediat. J. 14: 121-134. https://doi.org/10.1080/10889868.2010.495367
Cited by
- Characteristics of RDX degradation and the mechanism of the RDX exposure response in a Klebsiella sp. strain vol.176, 2020, https://doi.org/10.1016/j.bej.2021.108174