DOI QR코드

DOI QR Code

The Dose Dependent Effects of Ruxolitinib on the Invasion and Tumorigenesis in Gliomas Cells via Inhibition of Interferon Gamma-Depended JAK/STAT Signaling Pathway

  • Delen, Emre (Department of Neurosurgery, Trakya University School of Medicine) ;
  • Doganlar, Oguzhan (Department of Medical Biology, Trakya University School of Medicine)
  • 투고 : 2019.12.10
  • 심사 : 2020.03.11
  • 발행 : 2020.07.01

초록

Objective : Glioblastoma multiforme (GBM) is the most aggressive for of brain tumor and treatment often fails due to the invasion of tumor cells into neighboring healthy brain tissues. Activation of the Janus kinase-signal transducer and activator of transcription (JAK/STAT) signaling pathway is essential for normal cellular function including angiogenesis, and has been proposed to have a pivotal role in glioma invasion. This study aimed to determine the dose-dependent effects of ruxolitinib, an inhibitor of JAK, on the interferon (IFN)-I/IFN-α/IFN-β receptor/STAT and IFN-γ/IFN-γ receptor/STAT1 axes of the IFN-receptor-dependent JAK/STAT signaling pathway in glioblastoma invasion and tumorigenesis in U87 glioblastoma tumor spheroids. Methods : We administered three different doses of ruxolitinib (50, 100, and 200 nM) to human U87 glioblastoma spheroids and analyzed the gene expression profiles of IFNs receptors from the JAK/STAT pathway. To evaluate activation of this pathway, we quantified the phosphorylation of JAK and STAT proteins using Western blotting. Results : Quantitative real-time polymerase chain reaction analysis demonstrated that ruxolitinib led to upregulated of the IFN-α and IFN-γ while no change on the hypoxia-inducible factor-1α and vascular endothelial growth factor expression levels. Additionally, we showed that ruxolitinib inhibited phosphorylation of JAK/STAT proteins. The inhibition of IFNs dependent JAK/STAT signaling by ruxolitinib leads to decreases of the U87 cells invasiveness and tumorigenesis. We demonstrate that ruxolitinib may inhibit glioma invasion and tumorigenesis through inhibition of the IFN-induced JAK/STAT signaling pathway. Conclusion : Collectively, our results revealed that ruxolitinib may have therapeutic potential in glioblastomas, possibly by JAK/STAT signaling triggered by IFN-α and IFN-γ.

키워드

참고문헌

  1. Atkinson GP, Nozell SE, Benveniste ETN : NF-kappaB and STAT3 signaling in glioma: targets for future therapies. Expert Rev Neurother 10 : 575-586, 2010 https://doi.org/10.1586/ern.10.21
  2. Batash R, Asna N, Schaffer P, Francis N, Schaffer M : Glioblastoma multiforme, diagnosis and treatment; recent literature review. Curr Med Chem 24 : 3002-3009, 2017
  3. Charras A, Arvaniti P, Le Dantec C, Arleevskaya MI, Zachou K, Dalekos GN, et al. : JAK inhibitors suppress innate epigenetic reprogramming: a promise for patients with Sjogren's syndrome. Clin Rev Allergy Immunol 58 : 182-193, 2020 https://doi.org/10.1007/s12016-019-08743-y
  4. Cheng Z, Fu J, Liu G, Zhang L, Xu Q, Wang SY : Angiogenesis in JAK2 V617F positive myeloproliferative neoplasms and ruxolitinib decrease VEGF, HIF-1 enesis in JAK2 V617F positive cells. Leuk Lymphoma 59 : 196-203, 2018 https://doi.org/10.1080/10428194.2017.1324155
  5. Clara CA, Marie SK, de Almeida JR, Wakamatsu A, Oba-Shinjo SM, Uno M, et al. : Angiogenesis and expression of PDGF-C, VEGF, CD105 and HIF-$1{\alpha}$ in human glioblastoma. Neuropathology 34 : 343-352, 2014 https://doi.org/10.1111/neup.12111
  6. Delen E, Doganlar O, Doganlar ZB, Delen O : Inhibition of the invasion of human glioblastoma U87 cell line by ruxolitinib: a molecular player of miR-17 and miR-20a regulating JAK/STAT pathway. Turk Neurosurg 30 : 182-189, 2020
  7. Del Duca D, Werbowetski T, Del Maestro RF : Spheroid preparation from hanging drops: characterization of a model of brain tumor invasion. J Neurooncol 67 : 295-303, 2004 https://doi.org/10.1023/B:NEON.0000024220.07063.70
  8. Fetell MR, Housepian EM, Oster MW, Cote DN, Sisti MB, Marcus SG, et al. : Intratumor administration of beta-interferon in recurrent malignant gliomas. A phase I clinical and laboratory study. Cancer 65 : 78-83, 1990 https://doi.org/10.1002/1097-0142(19900101)65:1<78::AID-CNCR2820650117>3.0.CO;2-5
  9. Fogelman D, Cubillo A, Garcia-Alfonso P, Miron MLL, Nemunaitis J, Flora D, et al. : Randomized, double-blind, phase two study of ruxolitinib plus regorafenib in patients with relapsed/refractory metastatic colorectal cancer. Cancer Med 7 : 5382-5393, 2018 https://doi.org/10.1002/cam4.1703
  10. George J, Banik NL, Ray SK : Knockdown of hTERT and concurrent treatment with interferon-gamma inhibited proliferation and invasion of human glioblastoma cell lines. Int J Biochem Cell Biol 42 : 1164-1173, 2010 https://doi.org/10.1016/j.biocel.2010.04.002
  11. Haile WB, Gavegnano C, Tao S, Jiang Y, Schinazi RF, Tyor WR : The Janus kinase inhibitor ruxolitinib reduces HIV replication in human macrophages and ameliorates HIV encephalitis in a murine model. Neurobiol Dis 92(Pt B) : 137-143, 2016 https://doi.org/10.1016/j.nbd.2016.02.007
  12. Han ES, Wen W, Dellinger TH, Wu J, Lu SA, Jove R, et al. : Ruxolitinib synergistically enhances the anti-tumor activity of paclitaxel in human ovarian cancer. Oncotarget 9 : 24304-24319, 2018 https://doi.org/10.18632/oncotarget.24368
  13. Honda S, Sadatomi D, Yamamura Y, Nakashioya K, Tanimura S, Takeda K : WP1066 suppresses macrophage cell death induced by inflammasome agonists independently of its inhibitory effect on STAT3. Cancer Sci 108 : 520-527, 2017 https://doi.org/10.1111/cas.13154
  14. Hurwitz HI, Uppal N, Wagner SA, Bendell JC, Beck JT, Wade SM 3rd, et al. : Randomized, double-blind, phase II study of ruxolitinib or placebo in combination with capecitabine in patients with metastatic pancreatic cancer for whom therapy with gemcitabine has failed. J Clin Oncol 33 : 4039-4047, 2015 https://doi.org/10.1200/JCO.2015.61.4578
  15. Jain RK, di Tomaso E, Duda DG, Loeffler JS, Sorensen AG, Batchelor TT : Angiogenesis in brain tumours. Nat Rev Neurosci 8 : 610-622, 2007 https://doi.org/10.1038/nrn2175
  16. Jensen KV, Cseh O, Aman A, Weiss S, Luchman HA : The JAK2/STAT3 inhibitor pacritinib effectively inhibits patient-derived GBM brain tumor initiating cells in vitro and when used in combination with temozolomide increases survival in an orthotopic xenograft model. PLoS One 12 : e0189670, 2017 https://doi.org/10.1371/journal.pone.0189670
  17. Kaur B, Khwaja FW, Severson EA, Matheny SL, Brat DJ, Van Meir EG : Hypoxia and the hypoxia-inducible-factor pathway in glioma growth and angiogenesis. Neuro Oncol 7 : 134-153, 2005 https://doi.org/10.1215/S1152851704001115
  18. Kim EK, Chung DS, Shin HJ, Hong YK : Inhibitory effect of IFN-beta, on the Antitumor activity of celecoxib in U87 glioma model. J Korean Neurosurg Soc 46 : 552-557, 2009 https://doi.org/10.3340/jkns.2009.46.6.552
  19. Knupfer MM, Knupfer H, Van Gool S, Domula M, Wolff JE : Interferon gamma inhibits proliferation and hyaluronic acid adhesion of human malignant glioma cells in vitro. Cytokine 12 : 409-412, 2000 https://doi.org/10.1006/cyto.1999.0575
  20. Li H, Liang Q, Wang L : Icaritin inhibits glioblastoma cell viability and glycolysis by blocking the IL-6/Stat3 pathway. J Cell Biochem 120 : 7257-7264, 2019 https://doi.org/10.1002/jcb.28000
  21. Loboda A, Jozkowicz A, Dulak J : HIF-1 and HIF-2 transcription factors--similar but not identical. Mol Cells 29 : 435-442, 2010 https://doi.org/10.1007/s10059-010-0067-2
  22. Mukthavaram R, Ouyang X, Saklecha R, Jiang P, Nomura N, Pingle SC, et al. : Effect of the JAK2/STAT3 inhibitor SAR317461 on human glioblastoma tumorspheres. J Transl Med 13 : 269, 2015 https://doi.org/10.1186/s12967-015-0627-5
  23. Ohno M, Natsume A, Kondo Y, Iwamizu H, Motomura K, Toda H, et al. : The modulation of microRNAs by type I IFN through the activation of signal transducers and activators of transcription 3 in human glioma. Mol Cancer Res 7 : 2022-2030, 2009 https://doi.org/10.1158/1541-7786.MCR-09-0319
  24. Price SJ, Gillard JH : Imaging biomarkers of brain tumour margin and tumour invasion. Br J Radiol 84 Spec No 2 : S159-S167, 2011 https://doi.org/10.1259/bjr/26838774
  25. Priyanka R, Muralidharan NP : Interferons and interferon therapy. J Pharm Sci Res 6 : 400-403, 2014
  26. Schneider CA, Rasband WS, Eliceiri KW : NIH Image to ImageJ: 25 years of image analysis. Nat Methods 9 : 671-675, 2012 https://doi.org/10.1038/nmeth.2089
  27. Silginer M, Nagy S, Happold C, Schneider H, Weller M, Roth P : Autocrine activation of the IFN signaling pathway may promote immune escape in glioblastoma. Neuro Oncol 19 : 1338-1349, 2017 https://doi.org/10.1093/neuonc/nox051
  28. Tate MC, Aghi MK : Biology of angiogenesis and invasion in glioma. Neurotherapeutics 6 : 447-457, 2009 https://doi.org/10.1016/j.nurt.2009.04.001
  29. Vallatos A, Al-Mubarak HFI, Birch JL, Galllagher L, Mullin JM, Gilmour L, et al. : Quantitative histopathologic assessment of perfusion MRI as a marker of glioblastoma cell infiltration in and beyond the peritumoral edema region. J Magn Reson Imaging 50 : 529-540, 2019 https://doi.org/10.1002/jmri.26580
  30. Wakabayashi T, Kayama T, Nishikawa R, Takahashi H, Hashimoto N, Takahashi J, et al. : A multicenter phase I trial of combination therapy with interferon-${\beta}$ and temozolomide for high-grade gliomas (INTEGRA study): the final report. J Neurooncol 104 : 573-577, 2011 https://doi.org/10.1007/s11060-011-0529-1
  31. Wei J, Ma L, Li C, Pierson CR, Finlay JL, Lin J : Targeting upstream kinases of STAT3 in human medulloblastoma cells. Curr Cancer Drug Targets 19 : 571-582, 2019 https://doi.org/10.2174/1568009618666181016165604
  32. Weiswald LB, Bellet D, Dangles-Marie V : Spherical cancer models in tumor biology. Neoplasia 17 : 1-15, 2015 https://doi.org/10.1016/j.neo.2014.12.004