DOI QR코드

DOI QR Code

Poncirin Inhibits Osteoclast Differentiation and Bone Loss through Down-Regulation of NFATc1 In Vitro and In Vivo

  • Chun, Kwang-Hoon (Gachon Institute of Pharmaceutical Sciences, College of Pharmacy, Gachon University) ;
  • Jin, Hyun Chul (Lab of Cell Differentiation Research, College of Oriental Medicine, Gachon University) ;
  • Kang, Ki Sung (Lab of Cell Differentiation Research, College of Oriental Medicine, Gachon University) ;
  • Chang, Tong-Shin (College of Pharmacy, Seoul National University) ;
  • Hwang, Gwi Seo (Lab of Cell Differentiation Research, College of Oriental Medicine, Gachon University)
  • Received : 2018.11.05
  • Accepted : 2019.04.03
  • Published : 2020.07.01

Abstract

Activation of osteoclast and inactivation of osteoblast result in loss of bone mass with bone resorption, leading to the pathological progression of osteoporosis. The receptor activator of NF-κB ligand (RANKL) is a member of the TNF superfamily, and is a key mediator of osteoclast differentiation. A flavanone glycoside isolated from the fruit of Poncirus trifoliata, poncirin has anti-allergic, hypocholesterolemic, anti-inflammatory and anti-platelet activities. The present study investigates the effect of poncirin on osteoclast differentiation of RANKL-stimulated RAW264.7 cells. We observed reduced formation of RANKL-stimulated TRAP-positive multinucleated cells (a morphological feature of osteoclasts) after poncirin exposure. Real-time qPCR analysis showed suppression of the RANKL-mediated induction of key osteoclastogenic molecules such as NFATc1, TRAP, c-Fos, MMP9 and cathepsin K after poncirin treatment. Poncirin also inhibited the RANKL-mediated activation of NF-κB and, notably, JNK, without changes in ERK and p38 expression in RAW264.7 cells. Furthermore, we assessed the in vivo efficacy of poncirin in the lipopolysaccharide (LPS)-induced bone erosion model. Evaluating the micro-CT of femurs revealed that bone erosion in poncirin treated mice was markedly attenuated. Our results indicate that poncirin exerts anti-osteoclastic effects in vitro and in vivo by suppressing osteoclast differentiation. We believe that poncirin is a promising candidate for inflammatory bone loss therapeutics.

Keywords

References

  1. Asagiri, M., Sato, K., Usami, T., Ochi, S., Nishina, H., Yoshida, H., Morita, I., Wagner, E. F., Mak, T. W., Serfling, E. and Takayanagi, H. (2005) Autoamplification of NFATc1 expression determines its essential role in bone homeostasis. J. Exp. Med. 202, 1261-1269. https://doi.org/10.1084/jem.20051150
  2. Boyle, W. J., Simonet, W. S. and Lacey, D. L. (2003) Osteoclast differentiation and activation. Nature 423, 337-342. https://doi.org/10.1038/nature01658
  3. Choi, S. W., Park, K. I., Yeon, J. T., Ryu, B. J., Kim, K. J. and Kim, S. H. (2014) Anti-osteoclastogenic activity of matairesinol via suppression of p38/ERK-NFATc1 signaling axis. BMC Complement. Altern. Med. 14, 35. https://doi.org/10.1186/1472-6882-14-35
  4. Eferl, R., Hoebertz, A., Schilling, A. F., Rath, M., Karreth, F., Kenner, L., Amling, M. and Wagner, E. F. (2004) The Fos-related antigen Fra-1 is an activator of bone matrix formation. EMBO J. 23, 2789-2799. https://doi.org/10.1038/sj.emboj.7600282
  5. Fujisaki, K., Tanabe, N., Suzuki, N., Kawato, T., Takeichi, O., Tsuzukibashi, O., Makimura, M., Ito, K. and Maeno, M. (2007) Receptor activator of NF-kappaB ligand induces the expression of carbonic anhydrase II, cathepsin K, and matrix metalloproteinase-9 in osteoclast precursor RAW264.7 cells. Life Sci. 80, 1311-1318. https://doi.org/10.1016/j.lfs.2006.12.037
  6. Fukuda, A., Hikita, A., Wakeyama, H., Akiyama, T., Oda, H., Nakamura, K. and Tanaka, S. (2005) Regulation of osteoclast apoptosis and motility by small GTPase binding protein Rac1. J. Bone Miner. Res. 20, 2245-2253. https://doi.org/10.1359/JBMR.050816
  7. Grigoriadis, A. E., Wang, Z. Q., Cecchini, M. G., Hofstetter, W., Felix, R., Fleisch, H. A. and Wagner, E. F. (1994) c-Fos: a key regulator of osteoclast-macrophage lineage determination and bone remodeling. Science 266, 443-448. https://doi.org/10.1126/science.7939685
  8. Hayward, M. and Fiedler-Nagy, C. (1987) Mechanisms of bone loss: rheumatoid arthritis, periodontal disease and osteoporosis. Agents Actions 22, 251-254. https://doi.org/10.1007/BF02009053
  9. Huang, H., Chang, E. J., Ryu, J., Lee, Z. H., Lee, Y. and Kim, H. H. (2006) Induction of c-Fos and NFATc1 during RANKL-stimulated osteoclast differentiation is mediated by the p38 signaling pathway. Biochem. Biophys. Res. Commun. 351, 99-105. https://doi.org/10.1016/j.bbrc.2006.10.011
  10. Ikeda, F., Matsubara, T., Tsurukai, T., Hata, K., Nishimura, R. and Yoneda, T. (2008) JNK/c-Jun signaling mediates an anti-apoptotic effect of RANKL in osteoclasts. J. Bone Miner. Res. 23, 907-914. https://doi.org/10.1359/jbmr.080211
  11. Islam, S., Hassan, F., Tumurkhuu, G., Dagvadorj, J., Koide, N., Naiki, Y., Mori, I., Yoshida, T. and Yokochi, T. (2007) Bacterial lipopolysaccharide induces osteoclast formation in RAW 264.7 macrophage cells. Biochem. Biophys. Res. Commun. 360, 346-351. https://doi.org/10.1016/j.bbrc.2007.06.023
  12. Jang, Y., Kim, E. K. and Shim, W. S. (2018) Phytotherapeutic effects of the fruits of Poncirus trifoliata (L.) Raf. on cancer, inflammation, and digestive dysfunction. Phytother. Res. 32, 616-624. https://doi.org/10.1002/ptr.6008
  13. Jang, Y., Kim, T. K. and Shim, W. S. (2013) Naringin exhibits in vivo prokinetic activity via activation of ghrelin receptor in gastrointestinal motility dysfunction rats. Pharmacology 92, 191-197. https://doi.org/10.1159/000354579
  14. Kim, J., Lee, H., Kang, K. S., Chun, K. H. and Hwang, G. S. (2015) Cordyceps militaris mushroom and cordycepin inhibit RANKL-induced osteoclast differentiation. J. Med. Food 18, 446-452. https://doi.org/10.1089/jmf.2014.3215
  15. Kim, J. B., Han, A. R., Park, E. Y., Kim, J. Y., Cho, W., Lee, J., Seo, E. K. and Lee, K. T. (2007) Inhibition of LPS-induced iNOS, COX-2 and cytokines expression by poncirin through the NF-kappaB inactivation in RAW 264.7 macrophage cells. Biol. Pharm. Bull. 30, 2345-2351. https://doi.org/10.1248/bpb.30.2345
  16. Kim, J. H. and Kim, N. (2014) Regulation of NFATc1 in osteoclast differentiation. J. Bone Metab. 21, 233-241. https://doi.org/10.11005/jbm.2014.21.4.233
  17. Lee, Y. M., Kim, C. Y., Kim, Y. C. and Kim, H. M. (1997) Effects of Poncirus trifoliata on type I hypersensitivity reaction. Am. J. Chin. Med. 25, 51-56. https://doi.org/10.1142/S0192415X97000081
  18. Lee, Y. M., Kim, D. K., Kim, S. H., Shin, T. Y. and Kim, H. M. (1996) Antianaphylactic activity of Poncirus trifoliata fruit extract. J. Ethnopharmacol. 54, 77-84. https://doi.org/10.1016/S0378-8741(96)01451-1
  19. Manolagas, S. C. (2000) Birth and death of bone cells: basic regulatory mechanisms and implications for the pathogenesis and treatment of osteoporosis. Endocr. Rev. 21, 115-137. https://doi.org/10.1210/edrv.21.2.0395
  20. Matsuo, K., Owens, J. M., Tonko, M., Elliott, C., Chambers, T. J. and Wagner, E. F. (2000) Fosl1 is a transcriptional target of c-Fos during osteoclast differentiation. Nat. Genet. 24, 184-187. https://doi.org/10.1038/72855
  21. Monje, P., Hernandez-Losa, J., Lyons, R. J., Castellone, M. D. and Gutkind, J. S. (2005) Regulation of the transcriptional activity of c-Fos by ERK. A novel role for the prolyl isomerase PIN1. J. Biol. Chem. 280, 35081-35084. https://doi.org/10.1074/jbc.C500353200
  22. Roodman, G. D. (1999) Cell biology of the osteoclast. Exp. Hematol. 27, 1229-1241. https://doi.org/10.1016/S0301-472X(99)00061-2
  23. Shin, T. Y., Oh, J. M., Choi, B. J., Park, W. H., Kim, C. H., Jun, C. D. and Kim, S. H. (2006) Anti-inflammatory effect of Poncirus trifoliata fruit through inhibition of NF-kappaB activation in mast cells. Toxicol. In Vitro 20, 1071-1076. https://doi.org/10.1016/j.tiv.2006.02.003
  24. Smith, B. J., Lerner, M. R., Bu, S. Y., Lucas, E. A., Hanas, J. S., Lightfoot, S. A., Postier, R. G., Bronze, M. S. and Brackett, D. J. (2006) Systemic bone loss and induction of coronary vessel disease in a rat model of chronic inflammation. Bone 38, 378-386. https://doi.org/10.1016/j.bone.2005.09.008
  25. Soysa, N. S. and Alles, N. (2009) NF-kappaB functions in osteoclasts. Biochem. Biophys. Res. Commun. 378, 1-5. https://doi.org/10.1016/j.bbrc.2008.10.146
  26. Vaananen, H. K., Zhao, H., Mulari, M. and Halleen, J. M. (2000) The cell biology of osteoclast function. J. Cell Sci. 113, 377-381. https://doi.org/10.1242/jcs.113.3.377
  27. Wang, Z. Q., Ovitt, C., Grigoriadis, A. E., Mohle-Steinlein, U., Ruther, U. and Wagner, E. F. (1992) Bone and haematopoietic defects in mice lacking c-fos. Nature 360, 741-745. https://doi.org/10.1038/360741a0
  28. Wittrant, Y., Theoleyre, S., Couillaud, S., Dunstan, C., Heymann, D. and Redini, F. (2003) Regulation of osteoclast protease expression by RANKL. Biochem. Biophys. Res. Commun. 310, 774-778. https://doi.org/10.1016/j.bbrc.2003.09.084
  29. Wu, C. C., Hsu, S. C., Shih, H. M. and Lai, M. Z. (2003) Nuclear factor of activated T cells c is a target of p38 mitogen-activated protein kinase in T cells. Mol. Cell. Biol. 23, 6442-6454. https://doi.org/10.1128/MCB.23.18.6442-6454.2003
  30. Wu, H., Qi, H., Iwasaki, D., Zhu, B., Shimoishi, Y., Murata, Y. and Nakamura, Y. (2009) JNK-dependent NFATc1 pathway positively regulates IL-13 gene expression induced by (-)-epigallocatechin- 3-gallate in human basophilic KU812 cells. Free Radic. Biol. Med. 47, 1028-1038. https://doi.org/10.1016/j.freeradbiomed.2009.07.011
  31. Yoon, H. Y., Won, Y. Y. and Chung, Y. S. (2012) Poncirin prevents bone loss in glucocorticoid-induced osteoporosis in vivo and in vitro. J. Bone Miner. Metab. 30, 509-516. https://doi.org/10.1007/s00774-012-0350-8
  32. Yoon, H. Y., Yun, S. I., Kim, B. Y., Jin, Q., Woo, E. R., Jeong, S. Y. and Chung, Y. S. (2011) Poncirin promotes osteoblast differentiation but inhibits adipocyte differentiation in mesenchymal stem cells. Eur. J. Pharmacol. 664, 54-59. https://doi.org/10.1016/j.ejphar.2011.04.047

Cited by

  1. Potential Advantages of Bioactive Compounds Extracted From Traditional Chinese Medicine to Inhibit Bone Destructions in Rheumatoid Arthritis vol.11, 2020, https://doi.org/10.3389/fphar.2020.561962