DOI QR코드

DOI QR Code

석탄과 보조제로 바이오매스를 사용한 바이오 고형연료의 혼소 특성

Characteristics of the Co-Combustion of Coal and Bio-Solid Fuel using Biomass as an adjunct

  • 현완수 (인천대학교 환경에너지공학과) ;
  • 진용균 (인천대학교 환경에너지공학과) ;
  • 조은지 (인천대학교 환경에너지공학과) ;
  • 한현구 (인천대학교 환경에너지공학과) ;
  • 민선웅 (인천대학교 환경에너지공학과) ;
  • 여운호 (인천대학교 환경에너지공학과)
  • Hyeon, Wan-Su (Department of Environmental and Energy Engineering) ;
  • Jin, Yong-Gyun (Department of Environmental and Energy Engineering) ;
  • Jo, Eun-Ji (Department of Environmental and Energy Engineering) ;
  • Han, Hyun-Goo (Department of Environmental and Energy Engineering) ;
  • Min, Seon-Ung (Department of Environmental and Energy Engineering) ;
  • Yeo, Woon-Ho (Department of Environmental and Energy Engineering)
  • 투고 : 2020.05.19
  • 심사 : 2020.06.17
  • 발행 : 2020.06.30

초록

하수 슬러지는 수분 함량이 높고, 발열량이 낮아 하수 슬러지를 에너지원으로 사용하는데 어려움이 있다. 이런 하수 슬러지 특성을 개선하고, 화석 연료를 대체하기 위해 하수 슬러지와 목질계 바이오매스를 혼합한 바이오 고형연료를 생산하는 연구를 행하였다. 열중량 분석은 석탄과 5%, 10%, 15%의 바이오 고형연료를 각각 혼합하여 혼소할 경우 발생되는 특징을 연구하는 데에 활용되었다. 이 분석은 10℃/min씩 25℃에서 900℃까지 내부 온도를 올리는 비등온 조건하에서 수행되었다. 석탄 단일 시료를 석탄과 바이오 고형연료가 혼합된 시료와 비교하였을 경우 연소개시온도는 약간 변화가 일어났다. 하지만, 연소최대온도와 연소종료개시온도는 변화가 거의 없었다. 연소개시는 200 ~ 315 ℃에서 이뤄졌으며, 중량변화가 급격히 일어나는 열분해는 350 ~ 700 ℃에서 이뤄졌다. 혼소 반응속도 분석 결과 활성화 에너지는 혼합율이 높아질수록 낮아졌다. 그러므로 화력발전소에서 석탄과 바이오 고형연료를 혼소하는 것이 가능할 수 있을 것이다.

Due to the sewage sludge's characteristics of high water content and low calorific value, it is hard to use sewage sludge as an energy source. In this study, we investigated production of bio-solid fuel which is mixed both sewage sludge and woody biomass in order to improve the sewage sludge's characteristics and replace fossil fuels. A thermogravimetric analysis was used to investigate the co-combustion characteristics of the mixed coal and bio-solid fuel of 5%, 10%, 15%, respectively. The analysis was carried out under non-isothermal conditions by raising the internal temperature of 25℃ to 900℃ with an increment of 10℃/min. In the case of comparing single coal sample and mixture sample of coal and bio-solid fuel, the initiation combustion temperature has slightly changed. However, both the maximum combustion temperature and the termination start combustion temperature were hardly noticeable. The initiation combustion was occurred between 200~315℃ and the thermal decomposition causing a significant weight change occurred between 350~700℃. As a result of the kinetic analysis of the co-combustion, the activation energy was decreased as the mixing rate was higher. Therefore, it is able to co-combust the mixed coal and bio-solid fuel in power plants.

키워드

참고문헌

  1. [한국에너지경제연구원, 월간 에너지 통계] Korea Energy Economics Institute, Monthly Energy Statistics, 33(8), (2017).
  2. The Intergovernmental Panel on Climate Change, Fifth Assessment Report, (2014).
  3. Choi, H. J. and Lee, S. H., "Estimation on Reaction Kinetics for Carbonization Process using Mixture of Woody Waste and Sewage Sludge", KSWM, 33(2), pp. 184-191. (2016).
  4. Vaxelaire, J. and Cezac, P., "Moisture Distribution in Activated Sludges:A Review", Water Research, 38(9), pp. 2214-2229. (2004).
  5. [조진경, "반응표면분석을 이용한 바이오 고형연료의 연료조성 최적화 연구", 인천대학교 대학원 석사학위논문] Jo, J. K., "A Study on Optimization of Various Bio-SRF Composition by Response Surface Methodology", Incheon National University, (2017).
  6. Hyeon, W. S., et. al., "A Study on Optimization of Bio-Solid Fuel Composition with Sewage Sludge using Design of Experiment(DOE)", International Journal of Current Research, 9(7), pp. 54497-54501. (2017).
  7. [박소미, "열중량 분석법을 이용한 하수슬러지탄화물의 연소 특성 평가", 한밭대학교 산업대학원 석사학위논문] Park, S. M., "Evaluation of Combustion Characteristics of Carbonized Sewage Sludge using Thermogravimetric Analysis", Hanbat National University, (2016).
  8. Folgueras, M. B., Diaz, R. M., Xiberta, J. and Prieto I., "Thermogravimetric Analysis of the Co-combustion of Coal and Sewage Sludge", Fuel, 82(15), pp. 2051-2055. (2003). https://doi.org/10.1016/S0016-2361(03)00161-3
  9. Sahu, S. G., Sarkar, P., Chakraborty, N. and Adak, A., "Thermogravimetric assessment of Combustion Characteristics of Blends of a Coal with Different Biomass Chars", Fuel Processing Technology, 91(3), pp. 369-378. (2010). https://doi.org/10.1016/j.fuproc.2009.12.001
  10. Yanfen, L. and Xiaoqian, M., "Thermogravimetric Analysis of the Co-combustion of Coal and Paper Mill Sludge", Applied Energy, 88(11), pp. 3526-3532. (2010). https://doi.org/10.1016/j.apenergy.2010.05.008
  11. [박우식, "초정정 석탄의 제조와 TGA에 의한 연소특성 해석", 한양대학교 대학원 석사학위논문] Park, W. S., "Production of Super Clean Coal and Analysis of Combustion Characteristics using TGA", Hanyang University, (2010).
  12. Coats, A. W. and Redfern, J., "Kinetic Parameters from Thermogravimetric Data", Nature, 201(4914), pp. 68-69. (1964). https://doi.org/10.1038/201068a0
  13. Otero, M., Calvo, L., Gil, M., Garcia, A. and Moran, A., "Co-combustion of Different Sewage Sludge and Coal ːA Non-isothermal Thermogravimetric Kinetic Analysis", Bioresource Technology, 99(14), pp. 6311-6319. (2008). https://doi.org/10.1016/j.biortech.2007.12.011
  14. Otero, M., Gomez, X., Garcia, A. and Moran, A., "Non-isothermal Thermogravimetric Analysis of the Combustion of two Different Carbonaceous Materials", J. of Thermal Analysis and Calorimetry, 93(2), pp. 619-626. (2008). https://doi.org/10.1007/s10973-007-8415-y
  15. Shankar Tumuluru, J., Sokhansanj, S., Hess, J. R., Wright, C. T. and Boardman, R. D., "A Review on Biomass Torrefaction Process and Product Properties for Energy Applications", Industrial Biotechnology, 7(5), pp. 384-401. (2011). https://doi.org/10.1089/ind.2011.7.384
  16. [박성현, 회귀분석학, 2판, 민영사] Park, S. H., Regression Analysis, 2nd ed., Minyoungsa, (1993).