DOI QR코드

DOI QR Code

무유출의 고려를 통한 간헐하천 유역에 확률기반의 격자형 수문모형의 구축

Accounting for zero flows in probabilistic distributed hydrological modeling for ephemeral catchment

  • 이동기 (공주대학교 건설환경공학과) ;
  • 안국현 (공주대학교 건설환경공학과)
  • Lee, DongGi (Department of Civil and Environmental Engineering, Kongju National University) ;
  • Ahn, Kuk-Hyun (Department of Civil and Environmental Engineering, Kongju National University)
  • 투고 : 2020.03.18
  • 심사 : 2020.05.18
  • 발행 : 2020.06.30

초록

본 연구에서는 우리나라의 기후 특성의 영향으로 종종 발생하는 무유출량의 간헐하천 유역(Ephemeral catchment)에 확률기반 격자형 수문 모형을 구축하였다. 격자형 모형의 구축을 위하여 Sacramento Soil Moisture Accounting Model (SAC-SMA) 유출 모형을 사용하였으며 라우팅 모형의 결합으로 격자형 강우-유출 모형을 구축하였다. 확률 모형의 표현을 위하여 에러 모형을 결합시켰으며 간헐하천 유역에 적합하게 표현하기 위해서 검열된 오류 모형(censoring error model)을 사용하였다. 기존에 많이 사용되는 정규화된 오류 모형과의 비교를 통하여 본 연구에서 구축한 모형의 적합성을 평가하였다. 먼저 과거 주된 연구와 유역에 대한 검토를 통하여 그 필요성을 논하였으며 우리나라에서 수문 모형에 많이 사용되는 용담댐을 선정하여 수문 모형을 구축하였다. 결과적으로 본 연구에서 구축한 두개의 모형이 둘 다 신뢰할 만한 결과를 보여주지만 검열된 오류 모형의 사용이 더욱 적합한 결과를 보여주는 것을 확인하였다. 이 과정에서 기존의 방법론은 확률 기반의 유출량의 표현에 있어서 0 이하의 음수값을 상당히 표현하였으며 이는 현실이지 못한 수문 모델링의 표현을 의미한다. 본 연구에서는 또한 두 모형의 심층적인 비교를 위하여 심화된 간헐하천 유역을 구축하고 수문 모델링을 하였다. 결과적으로 무유출의 빈도 증가에 따라 무유출량을 고려하는 검열된 오류 모형의 효율이 증가하는 것을 알 수 있었다. 본 연구에서 얻은 결과는 우리나라의 수문 모델링에 있어서 간헐하천 유역에 대한 고려가 필요하다는 것을 의미한다.

This study presents a probabilistic distributed hydrological model for Ephemeral catchment, where zero flow often occurs due to the influence of distinct climate characteristics in South Korea. The gridded hydrological model is developed by combining the Sacramento Soil Moisture Accounting Model (SAC-SMA) runoff model with a routing model. In addition, an error model is employed to represent a probabilistic hydrologic model. To be specific, the hydrologic model is coupled with a censoring error model to properly represent the features of ephemeral catchments. The performance of the censoring error model is evaluated by comparing it with the Gaussian error model, which has been utilized in a probabilistic model. We first address the necessity to consider ephemeral catchments through a review of the extensive research conducted over the recent decade. Then, the Yongdam Dam catchment is selected for our study area to confirm the usefulness of the hydrologic model developed in this study. Our results indicate that the use of the censored error model provides more reliable results, although the two models considered in this study perform reliable results. In addition, the Gaussian model delivers many negative flow values, suggesting that it occasionally offers unrealistic estimations in hydrologic modeling. In an in-depth analysis, we find that the efficiency of the censored error model may increase as the frequency of zero flow increases. Finally, we discuss the importance of utilizing the censored error model when the hydrologic model is applied for ephemeral catchments in South Korea.

키워드

참고문헌

  1. Ahn, K.H., and Kim, Y.O. (2019). "Incorporating climate model similarities and hydrologic error models to quantify climate change impacts on future riverine flood risk." Journal of Hydrology, Vol. 48, pp.118-131.
  2. Ahn, S.R., Jung, C.G., and Kim, S.J. (2015). "A study on the effectiveness of radar rainfall by comparing with flood inundation record map using KIMSTORM (Grid-based KIneMatic Wave STOrm Runoff Model)." Journal of Korea Water Resources Association, Vol. 48, No. 11, pp. 925-936. https://doi.org/10.3741/JKWRA.2015.48.11.925
  3. Ahn, S.R., Jang, C.H., Lee, J.W., and Kim, S.J. (2015). "Assessment of climate and land use change impacts on watershed hydrology for an urbanizing watershed." Journal of the Korean Society of Civil Engineers, Vol. 35, No. 3, pp. 567-577. https://doi.org/10.12652/Ksce.2015.35.3.0567
  4. Ahn, S.R., Park, G., Jang, C.H., and Kim, S.J. (2013). "Assessment of climate change impact on evapotranspiration and soil moisture in a mixed forest catchment using spatially calibrated SWAT model." Journal of Korea Water Resources Association, Vol. 46, No. 6, pp. 569-583. https://doi.org/10.3741/JKWRA.2013.46.6.569
  5. Allen, R.G., Pereira, L.S., Raes, D., and Smith, M. (1998). Crop evapotranspiration-guidelines for computing crop water requirements-FAO irrigation and drainage paper 56. FAO, Rome, Vol. 300, p. 6541.
  6. Bae, D.H., Jung, I.W., Lee, B.J., and Lee, M.H. (2011). "Future Korean water resources projection considering uncertainty of GCMs and hydrological models." Journal of Korea Water Resources Association, Vol. 44, No. 5, pp. 389-406. https://doi.org/10.3741/JKWRA.2011.44.5.389
  7. Bae, D.H., and Lee, B.J. (2011). "Development of continuous rainfall-runoff model for flood forecasting on the large-scale basin." Journal of Korea Water Resources Association, Vol. 44, No. 1, pp. 51-64. https://doi.org/10.3741/JKWRA.2011.44.1.51
  8. Belisle, C.J. (1992). "Convergence theorems for a class of simulated annealing algorithms on ${\mathbb{R}}^n$." Journal of Applied Probability, Vol. 29, No. 4, pp. 885-895. https://doi.org/10.2307/3214721
  9. Burnash, R.J., Ferral, R.L., and McGuire, R.A. (1973). A generalized streamflow simulation system, conceptual modeling for digital computers. California Nevada River Forecast Center, Sacramento, C.A, U.S.
  10. Choi, D., Choi, H., Kim, K., and Kim, S. (2012). "Development of the ecohydrologic model for simulating water balance and vegetation dynamics." Journal of Korean Society on Water Environment, Vol. 28, No. 4, pp. 582-594.
  11. Choi, D., Kim, I.H., Kim, J., and Kim, S. (2013). "Development of distributed ecohydrologic model and its application to the Naeseong creek basin." Journal of Korea Water Resources Association, Vol. 46, No. 11, pp. 1053-1067. https://doi.org/10.3741/JKWRA.2013.46.11.1053
  12. Choi, H.S. (2013). "Parameter estimation of SWAT model using SWAT-CUP in Seom-river experimental watershed." Journal of the Korean Society of Civil Engineers, Vol. 33, No. 2, pp. 529-536. https://doi.org/10.12652/Ksce.2013.33.2.529
  13. Choo, T.H., Ko, H.S., Yoon, H.C., Noh, H.S., and Son, H.S. (2015). "The estimation and analysis of Miryang dam inflow based on RCP scenario." Journal of the Korea Academia-Industrial cooperation Society, Vol. 16, No. 5, pp. 3469-3476. https://doi.org/10.5762/KAIS.2015.16.5.3469
  14. Chu, H.J., Lin, Y.P., Huang, C.W., Hsu, C.Y., and Chen, H.Y. (2010). "Modelling the hydrologic effects of dynamic land-use change using a distributed hydrologic model and a spatial land-use allocation model." Hydrological processes, Vol. 24, No. 18, pp. 2538-2554. https://doi.org/10.1002/hyp.7667
  15. Cressie, N. (1988). "Spatial prediction and ordinary kriging." Mathematical geology, Vol. 20, No. 4, pp. 405-421. https://doi.org/10.1007/BF00892986
  16. Criss, R.E., and Winston, W.E. (2008). "Do Nash values have value? Discussion and alternate proposals." Hydrological Processes: An International Journal, Vol. 22, No. 14, pp. 2723-2725. https://doi.org/10.1002/hyp.7072
  17. Evin, G., Thyer, M., Kavetski, D., McInerney, D., and Kuczera, G. (2014). "Comparison of joint versus postprocessor approaches for hydrological uncertainty estimation accounting for error autocorrelation and heteroscedasticity." Water Resources Research, Vol. 50, No. 3, pp. 2350-2375. https://doi.org/10.1002/2013WR014185
  18. Ghafouri-Azar, M., and Bea, D.H. (2018). "Streamflow response to climate change during the wet and dry seasons in South Korea under a CMIP5 climate model." Journal of Korea Water Resources Association, Vol. 51, No. 11, pp. 1091-1103.
  19. Gupta, H.V., Kling, H., Yilmaz, K.K., and Martinez, G.F. (2009). "Decompos ition of the mean squared error and NSE performance criteria: Implications for improving hydrological modelling." Journal of Hydrology, Vol. 377, No. 1-2, pp. 80-91. https://doi.org/10.1016/j.jhydrol.2009.08.003
  20. Hargreaves, G.H., and Samani, Z.A. (1982). "Estimating potential evapotranspiration." Journal of the Irrigation and Drainage Division, Vol. 108, No. 3, pp. 225-230. https://doi.org/10.1061/JRCEA4.0001390
  21. Huang, P., Li, Z., Chen, J., Li, Q., and Yao, C. (2016). "Event-based hydrological modeling for detecting dominant hydrological process and suitable model strategy for semi-arid catchments." Journal of Hydrology, Vol. 542, pp. 292-303. https://doi.org/10.1016/j.jhydrol.2016.09.001
  22. Jang, J.H., and Ahn, J.H. (2012). "Assessing future climate change impact on hydrologic and water quality components in Nakdong River basin." Journal of Korea Water Resources Association, Vol. 45, No. 11, pp. 1121-1130. https://doi.org/10.3741/JKWRA.2012.45.11.1121
  23. Jang, S.S., and Kim, S.J. (2017). "Assessment of climate change impact on highland agricultural watershed hydrologic cycle and water quality under RCP scenarios using SWAT." Journal of The Korean Society of Agricultural Engineers, Vol. 59, No. 3, pp. 41-50. https://doi.org/10.5389/KSAE.2017.59.3.041
  24. Jeong, H.G., Kim, S.J., and Ha, R. (2013). "Assessment of climate change impact on storage behavior of Chungju and the regulation dams using SWAT model." Journal of Korea Water Resources Association, Vol. 46, No. 12, pp. 1235-1247. https://doi.org/10.3741/JKWRA.2013.46.12.1235
  25. Jang, S.S., Ahn, S.R., Joh, H.K., and Kim, S.J. (2015). "Assessment of climate change impact on Imha-dam watershed hydrologic cycle under RCP scenarios." Journal of the Korean Association of Geographic Information Studies, Vol. 18, No. 1, pp. 156-169. https://doi.org/10.11108/kagis.2015.18.1.156
  26. Jung, J.W., Jang, J.R., Lim, B.J., Lee, Y.J., Kim, G.S., Kang, J.H., Park, H.R., Cho, S.Y., and Yoon, K.S. (2011). "Simulation of spills from Saemangeum Basin using SWAT automatic correction function." Journal of Korea Society of Water Science and Technology, Vol. 19, No. 1, pp. 11-17.
  27. Joh, H.K., Park, J.Y., Jang, C.H., and Kim, S.J. (2012). "Comparing prediction uncertainty analysis techniques of SWAT simulated streamflow applied to Chungju dam watershed." Journal of Korea Water Resources Association, Vol. 45, No. 9, pp. 861-874. https://doi.org/10.3741/JKWRA.2012.45.9.861
  28. Jung, C.G., Moon, J.W., and Lee, D.R. (2014). "Study on runoff variation by spatial resolution of input GIS data by using distributed rainfall-runoff model." Journal of Korea Water Resources Association, Vol. 47, No. 9, pp. 767-776. https://doi.org/10.3741/JKWRA.2014.47.9.767
  29. Jung, C.M., Shin, M.J., and Kim, Y.O. (2015). "A comparison study of runoff projections for Yongdam dam watershed using SWAT." Journal of Korea Water Resources Association, Vol. 48, No. 6, pp. 439-449. https://doi.org/10.3741/JKWRA.2015.48.6.439
  30. Jung, I.K., Park, J.Y., Park, M.J., Shin, H.J., Jeong, H.G., and Kim, S.J. (2010). "Application of a grid-based rainfall-runoff model using SRTM DEM." Journal of the Korean Association of Geographic Information Studies, Vol. 13, No. 4, pp. 157-169. https://doi.org/10.11108/kagis.2010.13.4.157
  31. Kang, H.S., Jang, J.H., Ahn, J.H., and Kim, I.J. (2011). "Numerical estimations of nakdong river flows through linking of watershed and river flow models." Journal of Korea Water Resources Association, Vol. 44, No. 7, pp. 577-590. https://doi.org/10.3741/JKWRA.2011.44.7.577
  32. Kang, M.G., Lee, J.H., and Park, K.W. (2013). "Parameter regionalization of a TANK model for simulating runoffs from ungauged watersheds." Journal of Korea Water Resources Association, Vol. 46, No. 5, pp. 519-530. https://doi.org/10.3741/JKWRA.2013.46.5.519
  33. Kim, B.S., Yoon, S.K., Yang, D.M., and Kwon, H.H. (2010). "Development of grid-based conceptual hydrologic model." Journal of Korea Water Resources Association, Vol. 43, No. 7, pp. 667-679. https://doi.org/10.3741/JKWRA.2010.43.7.667
  34. Kim, C.G., and Kim, N.W. (2012). "Comparison of natural flow es timates for the Han River bas in using TANK and SWAT models." Journal of Korea Water Resources Association, Vol. 45, No. 3, pp. 301-316. https://doi.org/10.3741/JKWRA.2012.45.3.301
  35. Kim, C.G., Kim, N.W., and Lee, J.E (2014). "Assessing the effect of upstream dam outflows and river water uses on the inflows to the Paldang dam." Journal of Korea Water Resources Association, Vol. 47, No. 11, pp. 1017-1026. https://doi.org/10.3741/JKWRA.2014.47.11.1017
  36. Kim, J.M., and Kim, Y.D. (2011). "A Study on estimation of pollutant loads in Seonakdong River using SWAT-SWMM model." Journal of Korean Society of Water and Wastewater, Vol. 25, No. 6, pp. 825-837.
  37. Kim, K.U., Song, J.H., Ahn, J., Park, J., Jun, S.M., Song, I., and Kang, M.S. (2014). "Evaluation of the Tank model optimized parameter for watershed modeling." Journal of The Korean Society of Agricultural Engineers, Vol. 56, No. 4, pp. 9-19. https://doi.org/10.5389/KSAE.2014.56.4.009
  38. Kim, N.W., Chung, I.M., and Na, H. (2015). "An integrated water budget analysis of Oedocheon watershed in Jeju island." Journal of Environmental Sciences International, Vol. 24, No. 4, pp. 471-480.
  39. Kim, N.W., Lee, J., Chung, I.M., and Sung, G.Y. (2012). "Analysis of effects of groundwater abstraction on streamflow for Sinduncheon watershed." Journal of Korea Water Resources Association, Vol. 45, No. 12, pp. 1259-1273. https://doi.org/10.3741/JKWRA.2012.45.12.1259
  40. Kim, S.H., Ahn, S.R., Jang, C.H., and Kim, S.J. (2013). "Applicability test of UK design flood estimation model FEH-ReFH to Korean Namcheon watershed." Journal of the Korean Association of Geographic Information Studies, Vol. 16, No. 3, pp. 68-80. https://doi.org/10.11108/kagis.2013.16.3.068
  41. Kim, S.H., Nam, W.S., and Bae, D.H. (2019). "An analysis of effects of seasonal weather forecasting on dam reservoir inflow prediction." Journal of Korea Water Resources Association, Vol. 52, No. 7, pp. 451-461. https://doi.org/10.3741/JKWRA.2019.52.7.451
  42. Kim, S.J., Park, G., Lee, Y.G., and Ahn, S.R. (2014). "Development of a meso-scale distributed continuous hydrologic model and application for climate change impact assessment to Han River basin." Journal of the Korean Association of Geographic Information Studies, Vol. 17, No. 3, pp. 160-174. https://doi.org/10.11108/kagis.2014.17.3.160
  43. Kim, W.J., Jung, C.G., Kim, J.U., and Kim, S.J. (2018). "Water shortage assessment by applying future climate change for boryeong dam using SWAT." Journal of Korea Water Resources Association, Vol. 51, No. 12, pp. 1195-1205.
  44. Koren, V., Reed, S., Smith, M., Zhang, Z., and Seo, D.-J. (2004). "Hydrology laboratory research modeling system (HL-RMS) of the US national weather service." Journal of Hydrology, Vol. 291, No. 3-4, pp. 297-318. https://doi.org/10.1016/j.jhydrol.2003.12.039
  45. Lee, B.J., Jung, I.W., Jung, H.S. and Bae, D.H. (2013). "Development of realtime dams hydrologic variables prediction model using observed data assimilation and reservoir operation techniques." Journal of Korea Water Resources Association, Vol. 46, No. 7, pp. 755-765. https://doi.org/10.3741/JKWRA.2013.46.7.755
  46. Lee, D.G. (2008). "Changes in climate and runoff on the Korean peninsula due to climate change." The Society of Air-conditioning and Refrigerating Engineers of Korea, Vol. 37, No. 1, pp. 8-12.
  47. Lee, E.H., and Seo, D.I. (2011). "Flow calibration and validation of Daechung lake watershed, Korea using SWAT-CUP." Journal of Korea Water Resources Association, Vol. 44, No. 9, pp. 711-720. https://doi.org/10.3741/JKWRA.2011.44.9.711
  48. Lee, H., Seo, D.J., Liu, Y., Koren, V., McKee, P., and Corby, R. (2012). "Variational assimilation of streamflow into operational distributed hydrologic models: Effect of spatiotemporal scale of adjustment." Hydrology and Earth System Sciences, Vol. 16, No. 7, pp. 2233-2251. https://doi.org/10.5194/hess-16-2233-2012
  49. Lee, J., Cho, H., Choi, M., and Kim, D. (2017). "Development of land surface model for Soyang River basin." Journal of Korea Water Resources Association, Vol. 50, No. 12, pp. 837-847. https://doi.org/10.3741/JKWRA.2017.50.12.837
  50. Lee, J., Kim, N.W., and Lee, J.E. (2016). "Modification of surface flow analysis algorithm in SWAT." Journal of the Korean Society of Civil Engineers, Vol. 36, No. 3, pp. 417-426. https://doi.org/10.12652/Ksce.2016.36.3.0417
  51. Lee, J., Kim, N.W., Chung, I.M., and Lee, J.E. (2015). "Effects of irrigation reservoirs and groundwater withdrawals on streamflow for the Anseongcheon upper watershed." Journal of the Korean Society of Civil Engineers, Vol. 35, No. 4, pp. 835-844. https://doi.org/10.12652/Ksce.2015.35.4.0835
  52. Lee, J.M., Kim, Y.-D., Kang, B.-S., and Yi, H.-S. (2012). "Impact of climate change on runoff in Namgang dam watershed." Journal of Korea Water Resources Association, Vol. 45, No. 6, pp. 517-529. https://doi.org/10.3741/JKWRA.2012.45.6.517
  53. Lee, J.W., Jung, C.G., Kim, D.R., and Kim, S.J. (2018). "Assessment of future climate change impact on groundwater level behavior in Geum river basin using SWAT." Journal of Korea Water Resources Association, Vol. 51, No. 3, pp. 247-261. https://doi.org/10.3741/JKWRA.2018.51.3.247
  54. Lee, J.W., Jung, C.G., Woo, S.Y., and Kim, S.J. (2019). "Evaluation of stream flow and water quality behavior by weir operation in Nakdong river basin using SWAT." Journal of Korea Water Resources Association, Vol. 52, No. 5, pp. 349-360. https://doi.org/10.3741/JKWRA.2019.52.5.349
  55. Lee, M., Kang, N., Kim, J., and Kim, H.S. (2018). "Estimation of optimal runoff hydrograph using radar rainfall ensemble and blending technique of rainfall-runoff models." Journal of Korea Water Resources Association, Vol. 51, No. 3, pp. 221-233. https://doi.org/10.3741/JKWRA.2018.51.3.221
  56. Lee, W.S., Chung, E.S., Kim, S.U., and Lee, K.S. (2010). "Development of TANK_GS model to consider the interaction between surface water and groundwater." Journal of Korea Water Resources Association, Vol. 43, No. 10, pp. 893-909. https://doi.org/10.3741/JKWRA.2010.43.10.893
  57. Legates, D.R., and McCabe Jr, G.J. (1999). "Evaluating the use of 'goodness-of-fit' measures in hydrologic and hydroclimatic model validation." Water Resources Research, Vol. 35, No. 1, pp. 233-241. https://doi.org/10.1029/1998WR900018
  58. Lohmann, D., Raschke, E., Nijssen, B., and Lettenmaier, D. (1998). "Regional scale hydrology: I. Formulation of the VIC-2L model coupled to a routing model." Hydrological Sciences Journal, Vol. 43, No. 1, pp. 131-141. https://doi.org/10.1080/02626669809492107
  59. McInerney, D., Kavetski, D., Thyer, M., Lerat, J., and Kuczera, G. (2019). "Benefits of explicit treatment of zero flows in probabilistic hydrological modeling of ephemeral catchments." Water Resources Research, Vol. 43, No. 1, pp. 131-141.
  60. Moon, G.H., Kim, S.H., and Bae, D.H. (2018). "Development and evaluation of ANFIS-based conditional dam inflow prediction method using flow regime." Journal of Korea Water Resources Association, Vol. 51, No. 7, pp. 607-616. https://doi.org/10.3741/JKWRA.2018.51.7.607
  61. Nash, J. (1957). "The form of the instantaneous unit hydrograph." International Association of Scientific Hydrology, Publ, Vol. 3, pp. 114-121.
  62. Nash, J.E., and Sutcliffe, J.V. (1970). "River flow forecasting through conceptual models part I-A discussion of principles." Journal of Hydrology, Vol. 10, No. 3, pp. 282-290. https://doi.org/10.1016/0022-1694(70)90255-6
  63. Park, J., Kwon, J.H., Kim, T., and Heo, J.H. (2014). "Future inflow simulation considering the uncertainties of TFN model and GCMs on Chungju dam basin." Journal of Korea Water Resources Association, Vol. 47, No. 2, pp. 135-143. https://doi.org/10.3741/JKWRA.2014.47.2.135
  64. Park, J.H., Kwon, H.H., and No, S.H. (2011). "Outlook of discharge for Daecheong and Yongdam dam watershed using A1B climate change scenario based RCM and SWAT model." Journal of Korea Water Resources Association, Vol. 44, No. 12, pp. 929-940. https://doi.org/10.3741/JKWRA.2011.44.12.929
  65. Peck, E.L. (1976). Catchment modeling and initial parameter estimation for the National Weather Service river forecast system. NOAA Technical Memorandom NWS HYDRO-31, Office of Hydrology, Washington, D.C., U.S.
  66. Pilgrim, D., Chapman, T., and Doran, D. (1988). "Problems of rainfall-runoff modelling in arid and semiarid regions." Hydrological Sciences Journal, Vol. 33, No. 4, pp. 379-400. https://doi.org/10.1080/02626668809491261
  67. Renard, B., Kavetski, D., Leblois, E., Thyer, M., Kuczera, G., and Franks, S.W. (2011). "Toward a reliable decomposition of predictive uncertainty in hydrological modeling: Characterizing rainfall errors using conditional simulation." Water Resources Research, Vol. 47, No. 11. W11516.
  68. Ryu, J., Choi, J.W., Kang, H., Kum, D., Shin, D.S., Lee, K.H., Jeong, G.C., and Lim, K.J. (2012). "Evaluation of groundwater recharge rate for land uses at Mandae stream watershed using SWAT HRU Mapping module." Journal of Korean Society on Water Environment, Vol. 28, No. 5, pp. 743-753.
  69. Samuel, J., Coulibaly, P., Dumedah, G., and Moradkhani, H. (2014). "Assessing model state and forecasts variation in hydrologic data assimilation." Journal of Hydrology, Vol. 513, pp. 127-141. https://doi.org/10.1016/j.jhydrol.2014.03.048
  70. Schoups, G. and Vrugt, J.A. (2010). "A formal likelihood function for parameter and predictive inference of hydrologic models with correlated, heteroscedastic, and non-Gaussian errors." Water Resources Research, Vol. 46, No. 10, W10531. https://doi.org/10.1029/2009WR008933
  71. Shin, H.J., Park, M.J., and Kim, S.J. (2012). "Evaluation of forest watershed hydro-ecology using measured data and RHESSys model-For the Seolmacheon Catchment." Journal of Korea Water Resources Association, Vol. 45, No. 12, pp. 1293-1307. https://doi.org/10.3741/JKWRA.2012.45.12.1293
  72. Shin, H.J., Park, M.J., Lee, J.W., Hwang, E.H., Kang, S.M., and Chae, H.S. (2018). "Evaluation of Accuracy Improvement of SWAT Model for the Yongdam-dam Watershed based on multi-point hydrological observations." Journal of the Korean Association of Geographic Information Studies, Vol. 21, No. 3, pp. 104-118. https://doi.org/10.11108/KAGIS.2018.21.3.104
  73. Shon, T.S., Lee, S.D., Kim, S.D. and Shin, H.S. (2010). "An Analysis of the effect of climate change on flow in Nakdong river basin using watershed-based model." Journal of Korea Water Resources Association, Vol. 43, No. 10, pp. 865-881. https://doi.org/10.3741/JKWRA.2010.43.10.865
  74. Skoulikidis, N.T., Sabater, S., Datry, T., Morais, M.M., Buffagni, A., Dorflinger, G., Zogaris, S., del Mar Sanchez-Montoya, M., Bonada, N., Kalogianni, E., Rosado, J., Vardakas, L., Girolamo, A. M., and Tockner, K. (2017). "Non-perennial mediterranean rivers in Europe: Status, pressures, and challenges for research and management." Science of the Total Environment, Vol. 577, pp. 1-18. https://doi.org/10.1016/j.scitotenv.2016.10.147
  75. Tooth, S. (2000). "Process, form and change in dryland rivers: A review of recent research." Earth-Science Reviews, Vol. 51, No. 1-4, pp. 67-107. https://doi.org/10.1016/S0012-8252(00)00014-3
  76. Vogel, R.M. (2017). "Stochastic watershed models for hydrologic risk management." Water Security, Vol. 1, pp. 28-35. https://doi.org/10.1016/j.wasec.2017.06.001
  77. Wi, S., Yang, Y., Steinschneider, S., Khalil, A., and Brown, C. (2015). "Calibration approaches for distributed hydrologic models in poorly gaged basins: Implication for streamflow projections under climate change." Hydrology and Earth System Sciences, Vol. 19, No. 2, pp. 857-876. https://doi.org/10.5194/hess-19-857-2015
  78. Won, K.J., Sung, J.H., and Chung, E.S. (2015). "Parameteric assessment of water use vulnerability of South Korea using SWAT model and TOPSIS." Journal of Korea Water Resources Association, Vol. 48, No. 8, pp. 647-657. https://doi.org/10.3741/JKWRA.2015.48.8.647
  79. Ye, W., Bates, B., Viney, N., Sivapalan, M., and Jakeman, A. (1997). "Performance of conceptual rainfall-runoff models in lowyielding ephemeral catchments." Water Resources Research, Vol. 33, No. 1, pp. 153-166. https://doi.org/10.1029/96WR02840
  80. Zhang, Z., Koren, V., Reed, S., Smith, M., Zhang, Y., Moreda, F., and Cosgrove, B. (2012). "SAC-SMA a priori parameter differences and their impact on distributed hydrologic model simulations." Journal of Hydrology, Vol. 420, pp. 216-227. https://doi.org/10.1016/j.jhydrol.2011.12.004